U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Eighth Semester, B.E. - Electrical and Electronics Engineering **Semester End Examination; July - 2021**

Renewable Energy Sources

	Kenewable Energy Sources				
T	ime: 3 hrs Max. Marks: 100	-			
N	ote: Answer any FIVE full questions.				
1 a.	Distinguish between renewable and non-renewable energy sources.	6			
b.	What are the advantages and limitations of non-conventional energy sources?	6			
c.	Explain the significance of energy consumption as a measure of prosperity.	8			
2 a.	Define the terms;	6			
	i) Zenith angle ii) Declination angle	U			
b.	Determine the local apparent time and declination at a location latitude 22°15'N,				
	longitude 78°30′E at 12:25 IST on June 15. Equation of correction is = $-(1'01'')$.	8			
c.	Explain the operation of pyronometer with suitable sketch.	6			
3 a.	With neat sketch, explain the construction and working of solar cooker. Mention its	0			
	advantages and disadvantages.	8			
b.	With a neat sketch, explain the working of solar furnace.	6			
c.	Explain the principle of operation of green houses with suitable diagrams.	6			
4 a.	Explain the working of a solar pond with a neat diagram.	6			
b.	With a block diagram, explain the basic operation of grid integrated solar PV systems.	8			
c.	Explain the working of a solar water pumping system with a suitable diagram.	6			
5 a.	With a suitable block diagram, explain the function of different components of WECS.	8			
b.	Identify the main considerations in selecting a site for WECS.	6			
c.	Mention the advantages and disadvantages of WECS.	6			
6 a.	Derive an expression for the maximum power output of a horizantal axis wind turbine.	8			
b.	Classify the wind energy conversion systems.	6			
c.	Explain the basic principle of wind energy conversion.	6			
7 a.	With a suitable diagram, explain the operation of floating drum type (KVIC) biogas plant.	10			
b.	Identify and explain the factors affecting biogas generation.	10			
8 a.	Explain the following as applied to biomass conversion:				
	i) Thermo chemical conversion	10			
	ii) Anaerobic digestion	10			
	iii) Fermentation				
b.	With a suitable diagram, explain the operation of fixed dome type biogas plant.	10			

]	P17EE81 Page No	2	
9 a	a. Explain the working of Anderson cycle ocean thermal energy conversion system.	10	
t	b. Explain the operation of single basin-single effect and single basin-double effect schemes	s 10	
	of tidol energy conversion system.	10	
10 a	a. A tidal power plant of the simple single basin type has a basin area of 30×10^6 m ² .		
	The tide has a range of 12 m. The turbine, however stops operating when the head on it	10	
	falls below 3 m. Calculate the energy generated in one filling (or emptying) process in		
	kWhr, if the turbine generator efficiency is 0.73.		
t	o. Explain the working of claude cycle OTEC system.	10	

* * * *