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P.E.S. College of Engineering, Mandya - 571 401 
(An Autonomous Institution affiliated to VTU, Belagavi) 

Eighth Semester, B.E. - Semester End Examination; July - 2021  

Linear Algebra and Analysis 
Time: 3 hrs  Max. Marks: 100 

 

Note:  Answer any FIVE full questions. 
             

1 a. i) For any symmetric matrix A, prove that A2 is symmetric. 

ii) Express 

















=
007

654

321

A  as a sum of symmetric and skew symmetric matrix. 
6 

b. i) For any square matrix A, show that A + AT is symmetric.  

ii) If 
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A  show that iA is skew Hermitian.  
7 

c. i) Define unitary matrix with an example.  

ii) Express 
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 in the form P +iQ where P is a real symmetric and Q 

is a real skew symmetric matrix. 
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 2 a. Define a nilpotent matrix and verify whether, 
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A  is nilpotent. 6 

b. i) Define an orthogonal matrix with an example. 

ii) Show that the matrix 
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A is involutory  
7 

c. Show that 
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A  is orthogonal  7 

3 a.  Reduce the matrix 
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A to normal form. 6 

b. Find the inverse of 
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A using elementary matrices  7 
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c. Find A-1 by Cayley-Hamilton theorem if 

2 1 1

1 2 1 .

1 1 2
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 = − − − 
 − 

 7 

4 a. Determine the characteristic polynomial of 

9 1 5 7
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.
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 6 

b. Define minimal polynomial and determine the same for 
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 7 

c. Show that 
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A  satisfies its characteristic polynomial. 7 

   5 a. Solve numerically 0.0625
xx tt

u u=  subjected to u(0, t) = 0, u(5, t) = 0, ut(x, 0) = 0 and 

u(x, 0) = x2(x−5) by taking h = 1 for 0 ≤ t ≤ 1. 
10 

        b. Solve uxx+uyy= 0 in the following square region with the boundary conditions as 

indicated in the figure.  

 

10 

  6 a. Find the numerical solution of the parabolic equation 
2

2
2

y u

x t

∂ ∂=
∂ ∂

                                

when u(0, t) = 0 = u(4,t) and u(x,0) = x(4−x) by taking h = 1. Find the values upto t = 5. 

10 

     b. Solve Laplace equation uxx + uyy=0 for the following square mesh with boundary values 

as shown in the following figure. 

 

10 
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   7 a. Illustrate convergence and divergence of an infinite series with examples. 6 

  b.  State comparison test and apply the same to determine the convergence of  
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c. Verify the convergence of 
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 8 a. Discuss the convergence of the series 
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      b. Discuss the convergence of 
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   c. Find the radius of convergence of the followings: 
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7 

  9 a. Show that R2 is a vector space over R. 6 

       b. i) Define linearly dependent and independent vectors.  

ii) Show that the vectors (1, 2, −1) , (2, 2, 1), (1, −2, 3) are linearly independent in R3 
7 

   c. i) Define linear combination of vectors  

ii) Show that {(1, 2, 1), (1, 0, −1), (0, −3, 2)} forms a basis of R3(R) 
7 

 10 a. Find the basis and dimension of the subspace 1 2 1{( , ) | }  n

n n
w x x x x x of R= =L . 6 

      b. Find the rank of 4 3, :T given T R R→ is a linear map defined by,  

( , , , ) ( , 2 2 3 4 , 3 3 4 5 ).T x y z t x y z t x y z t x y z t= − + + − + + − + +  
7 

      c. Find the matrix of a linear transformation 2 2:T R R→  by ( , ) (2 3 , 4 5 )T x y x y x y= + −  

relative to the basis {(1, 2), (2, 5)}. 
7 

* * * * 
  


