P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Eighth Semester, B.E. - Semester End Examination; July - 2021
 Linear Algebra and Analysis

Time: 3 hrs
Max. Marks: 100
Note: Answer any FIVE full questions.
1 a. i) For any symmetric matrix A, prove that A^{2} is symmetric.
ii) Express $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 0\end{array}\right]$ as a sum of symmetric and skew symmetric matrix.
b. i) For any square matrix A, show that $A+A^{T}$ is symmetric.
ii) If $A=\left[\begin{array}{ccc}-1 & 2+i & 5-3 i \\ 2-i & 7 & 5 i \\ 5+3 i & -5 i & 2\end{array}\right]$ show that $i A$ is skew Hermitian.
c. i) Define unitary matrix with an example.
ii) Express $\left[\begin{array}{ccc}3 & 3+2 i & 0 \\ 3-2 i & 0 & 1+3 i \\ 0 & 1-3 i & -1\end{array}\right]$ in the form $P+i Q$ where P is a real symmetric and Q
is a real skew symmetric matrix.
2a. Define a nilpotent matrix and verify whether, $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ is nilpotent.
b. i) Define an orthogonal matrix with an example.
ii) Show that the matrix $A=\left[\begin{array}{ccc}3 & -4 & 4 \\ 0 & -1 & 0 \\ -2 & 2 & -3\end{array}\right]$ is involutory
c. Show that $A=\left[\begin{array}{ccc}\frac{1}{9} & \frac{8}{9} & -\frac{4}{9} \\ \frac{4}{9} & -\frac{4}{9} & -\frac{7}{9} \\ \frac{8}{9} & \frac{1}{9} & \frac{4}{9}\end{array}\right]$ is orthogonal

3 a. Reduce the matrix $A=\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 4 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \\ 1 & 2 & 0 & 1\end{array}\right]$ to normal form.
b. Find the inverse of $A=\left[\begin{array}{ccc}1 & 2 & -4 \\ -1 & -1 & 5 \\ 2 & 7 & -3\end{array}\right]$ using elementary matrices
c. Find A^{-l} by Cayley-Hamilton theorem if $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ -1 & -2 & -1 \\ 1 & -1 & 2\end{array}\right]$.
c. Show that $A=\left[\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right]$ satisfies its characteristic polynomial.

5 a. Solve numerically $u_{x x}=0.0625 u_{t t}$ subjected to $u(0, t)=0, u(5, t)=0, u_{t}(x, 0)=0$ and $u(x, 0)=x^{2}(x-5)$ by taking $h=1$ for $0 \leq t \leq 1$.
b. Solve $u_{x x}+u_{y y}=0$ in the following square region with the boundary conditions as indicated in the figure.

6 a . Find the numerical solution of the parabolic equation $\frac{\partial^{2} y}{\partial x^{2}}=2 \frac{\partial u}{\partial t}$ when $u(0, t)=0=u(4, t)$ and $u(x, 0)=x(4-x)$ by taking $h=1$. Find the values upto $t=5$.
b. Solve Laplace equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in the following figure.

7 a. Illustrate convergence and divergence of an infinite series with examples.
b. State comparison test and apply the same to determine the convergence of $V=\sum_{n=1}^{\infty}\left[\sqrt{n^{4}+1}-\sqrt{n^{4}-1}\right]$.
c. Verify the convergence of $\frac{2}{3+4}+\frac{2^{2}}{3^{2}+4}+\frac{2^{3}}{3^{3}+4}+\cdots$

8 a. Discuss the convergence of the series $1+\frac{2}{3} x+\left(\frac{3}{4}\right)^{2} x^{2}+\left(\frac{4}{5}\right)^{3} x^{3}+\cdots$
b. Discuss the convergence of $\frac{1^{2}}{4^{2}}+\frac{1^{2} \cdot 5^{2}}{4^{2} \cdot 8^{2}}+\frac{1^{2} \cdot 5^{2} \cdot 9^{2}}{4^{2} \cdot 8^{2} \cdot 12^{2}}+\cdots$
c. Find the radius of convergence of the followings:
i) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}} \cdot x^{n}$
ii) $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$

9 a. Show that R^{2} is a vector space over R.
b. i) Define linearly dependent and independent vectors.
ii) Show that the vectors $(1,2,-1),(2,2,1),(1,-2,3)$ are linearly independent in R^{3}
c. i) Define linear combination of vectors
ii) Show that $\{(1,2,1),(1,0,-1),(0,-3,2)\}$ forms a basis of $R^{3}(R)$

10 a . Find the basis and dimension of the subspace $w=\left\{\left(x_{1}, x_{2} \cdots x_{n}\right) \mid x_{1}=x_{n}\right\}$ of R^{n}.
b. Find the rank of T, given $T: R^{4} \rightarrow R^{3}$ is a linear map defined by, $T(x, y, z, t)=(x-y+z+t, 2 x-2 y+3 z+4 t, 3 x-3 y+4 z+5 t)$.
c. Find the matrix of a linear transformation $T: R^{2} \rightarrow R^{2}$ by $T(x, y)=(2 x+3 y, 4 x-5 y)$ relative to the basis $\{(1,2),(2,5)\}$.

