U.S.N					

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

Eighth Semester, B. E. - Mechanical Engineering
Semester End Examination; July - 2021
Industrial Robotics

Time: 3 hrs Max. Marks: 100

	Note: Answer any FIVE full questions.					
1 a.	Define Industrial robot. Discuss about a brief history about robotics.	1				
b.	With neat sketches, explain resolution, accuracy and repeatability with respect to robot.					
2 a.	Sketch and explain any two configurations of industrial robots with its merits.					
b.	With a neat sketch, explain CAM actuated and screw actuated mechanical grippers.					
3 a.	Discuss hydraulic and electric drive systems of industrial robots with relative advantages and disadvantages.	1				
b.	Explain the following feedback devices:					
	i) Potentiometers ii) Encoders]				
4 a.	Explain electric actuators used in industrial robots.	1				
b.	Discuss the velocity sensors and proximity sensors used in industrial robots.]				
5 a.	Describe the Euler angle representation of system-II and system-III. Also derive the Eulerian rotation matrix of system-I.	1				
b.	Find the resultant rotation matrix that represents a rotation of ϕ angle about the OY axis					
	followed by a rotation of θ angle about the OW axis followed by a rotation of α angle about					
	the OU axis.					
c.	If $a_{xyz} = (4, 3, 2)^T$ and $b_{xyz} = (6, 2, 4)^T$ are the coordinates with respect to the reference coordinate					
	system, determine the corresponding points a_{uvw} , b_{uvw} with respect to the rotated OUVW					
	coordinate system, if it has been rotated 60° about the OZ axis.					
6 a.	With a neat sketch, explain the steps involved in implementing DH convention.	1				
b.	With a neat diagram, explain the application of DH method for 3-axis robot arm articulated	1				
	robot and obtain the transformation matrices.]				
7 a.	Explain the features and capabilities of first generation and second generation robot languages.	1				
b.	Describe the motion commands used in robot programming languages.	1				
8 a.	Discuss the end effector and sensor commands in the robot programming languages.	1				
b.	Discuss the program control and subroutines in robot programming.	1				
9 a.	Explain the applications of robot in die casting and plastic molding process.	1				
b.	Discuss the technical considerations in arc-welding applications with respect to robots.	1				
10 a.	Explain the applications of robot in machining and stamping press operations.	1				
b.	Discuss the requirements of the robot for spray coating applications	1				