U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
First Semester, M. Tech - Civil Engineering (MCAD)
Semester End Examination; April / July -2021
Continuum Mechanics - Classical and FF Approach
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit.

UNIT - I

1 a . Derive the expression for the equilibrium of plane element in polar coordinate.
b. A rectangular bar of metal of cross section $30 \mathrm{~mm} \times 25 \mathrm{~mm}$ is subjected to an axial tensile force of 180 kN . Calculate the normal, shear and resultant stresses on a plane whose normal has the following direction cosines:
i) $l=m=\frac{1}{\sqrt{2}}$ and $n=0$
ii) $l=m=n=\frac{1}{\sqrt{3}}$
2. Given stress at a point as follows:

$$
T=\left[\begin{array}{ccc}
10 & 4 & 8 \\
4 & 20 & -6 \\
8 & -6 & -30
\end{array}\right] M P a
$$

Find principal stresses, maximum shear stresses, octahedral stresses with respect to principal stresses and plane of intermediate principal stress.

UNIT - II

3 a. Derive the strain displacement relation for a 2D element in Cartesian coordinate system.
b. Under what conditions are the following expressions for the components of strain at a point compatible?
$\epsilon_{\mathrm{x}}=2 a x y^{2}+b y^{2}+2 c x y$
$\epsilon_{y}=a x^{2}+b x$
$\gamma_{x y}=\alpha x^{2} y+\beta x y+\phi x^{2}+\eta y$
4 a . Derive the equations for principal strain in 3D coordinate system and hence obtain the equations for strain invariants.
b. The strain tensor at a point in a body is given by,
$\in=\left[\begin{array}{lll}0.0001 & 0.0002 & 0.0005 \\ 0.0002 & 0.0003 & 0.0004 \\ 0.0005 & 0.0004 & 0.0005\end{array}\right]$
Determine; i) Octahedral normal and shearing strains
ii) Deviatoric and spherical strain tensors

UNIT - III

5 a. Define generalized Hook's law. Obtain the expressions for stress strain relationships in a three dimensional problem in Cartesian coordinate system.
b. The state of strain at a point is given by,
$\epsilon_{x}=0.001 \quad \gamma_{y z}=0.001$
$\epsilon_{y}=-0.003$
$\gamma_{\mathrm{xz}}=-0.004$
$\epsilon_{z}=\gamma_{\mathrm{xy}}=0$
Determine the stress tensor at this point. Take $\in=210 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$, Poisson's ratio $=0.28$.
Also find Lame's constant.
6 a. Obtain the expression for compatibility equation in terms of stresses for plane strain problems in the absence of body force.
b. Show that $\left(A e^{\alpha y}+B e^{-\alpha y}+C y e^{\alpha y}+D y e^{-\alpha y}\right) \sin \alpha x$ represents a stress function.

UNIT - IV

7. A rectangular beam section of depth 2 h and is subjected to pure bending. Assuming the stress function as a polynomial of $3^{\text {rd }}$ degree and using St. Venant's principle, obtain the solution to the problem. Derive an expression for displacement components.

8 a. Derive the expressions for radial and tangential stresses in the case of solid rotating disc and state their maximum values.
b. A thick cylinder of inner radius 10 cm and outer radius 15 cm is subjected to an internal pressure of 12 MPa . Determine the radial and Hoop stresses in cylinder at inner and outer surface.

UNIT - V

9 a. Obtain the strain displacement relationship for a CST element.
b. Write the shape function for a CST element. Sketch neatly the variation of shape function.
10. Evaluate the element stiffness matrix for the four noded quadrilateral element shown in Fig. 10(b), using $1^{\text {st }}$ Gaussian quadrature $(1 / \sqrt{3}, 1 / \sqrt{3})$ Thickness $=20 \mathrm{~mm}, E=2 \times 10^{3} \mathrm{kN} / \mathrm{mm}^{2}$ and $\mu=0$.

