\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, Master of Computer Applications (MCA)
Semester End Examination; April / July - 2021
Mathematical Foundation for Computer Applications
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Explain the principles of counting and set theory.
CO2: Identify the quantifiers and their uses and Make use of fundamentals of logic theory.
CO3: Apply the mathematical induction principle and different methods to solve the given problems.
CO4: Solve the problems using the concepts of relations and functions and identify the different ways of representing relations.
CO5: make use of basic concepts of graph theory and solve the given problem.
Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.
II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
III) Each unit carries 20 marks.
Q. No.

Questions
Marks
BLs COs
POs
UNIT - I
1 a. How many 6 characters license plates are created which consists of 2 alphabets followed by 4 digits such that,
i) Without any restriction
ii) Without repetition of a alphabets and digits
b. A certain question paper contains 2 parts A and B each containing 4 questions. How many different ways a student can answer 5 questions by selecting at least 2 questions from each part?
c. Find the number of permutations of the letter of the following words:
i) PROGRESS
ii) TOPOLOGY
iii) ENGINEERING
OR

1 d. Prove that $(\overline{A \Delta B})=A \Delta \bar{B}=\bar{A} \Delta B$ by membership method.
$6 \quad$ L5 CO1 PO1
e. Find the number of integers between 1 to 200 that are,
i) Divisible by either 2 or 5 or 9

7
L1 CO1 PO2
ii) Not divisible by 2 or 5 or 9
f. A fair die is tossed twice, find the probability that;
i) Even numbers occurs on both throws

L1 $\mathrm{CO} 1 \quad \mathrm{PO} 2$
ii) An even number occur atleast one throw

UNIT - II

2 a. Define tautology. Prove that for any proposition p, q and r the compound proposition.

6
L1 CO2 PO1
$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is a tautology using truth table.

P20MCA13

b. Demonstrate symbolically and check validity of the given argument.

If Ravi goes out with friends, he will not study
If Ravi does not study, his father becomes angry
7
His father is not angry
Therefore Ravi has not gone out with friends
c. Outline a direct proof of the statement "the square of an odd integer is an odd integer".

UNIT - III

3 a. Prove by mathematical induction that for all positive integer $n \geq 1,1+2+3+4+---+n=\frac{1}{2} n(n+1)$.
b. Solve a recursive definition for the sequence,
i) $a_{n}=5_{n}$ for $n \geq 2$
ii) $a_{n}=3_{n}+7$ for $n \geq 2$
c. Define one-one functions, onto functions and find the number of one-one functions from a set of m elements to a set of n element.

OR

3 d . Define the following terms:
i) Identity function
iii) Ceiling function
ii) Constant function
iv) Floor function
e. State pigeon hole principle. Find the least number of ways of choosing three different numbers from 1 to 10 so that all choices have the same sum.
f. i) Let A and B be finite sets with $|A|=m$ and $|B|=n$. Find how many functions are possible from A to B ?

5
L1 $\mathrm{CO} 3 \quad \mathrm{PO} 2$
ii) if there are 2187 functions from A to B and $|B|=3$, what is $|A|=$?

UNIT - IV

4 a. Let $A=\{1,2,3,4,6\}$ and R be a relation on A defined by $a R b$ iff a is multiple of b represent R as a set of ordered pairs. Design the diagraph $6 \quad$ L6 \quad CO4 \quad PO1 and matrix representation of R.
b. Prove that the relation $R=\{(1,1)(1,2)(2,1)(2,2)(3,4)(4,3)$ $(3,3)(4,4)\}$ is an equivalence relation defined on the set $A=\{1,2,3,4\}$. 7

L5 CO4 PO1 Also determine the partition induced.
c. If $A=\{1,2,3,4\}$ and R is a relation on set A defined by $R=\{(1,2)(1,3)(2,4)(3,2)(3,3)(3,4)\}$ find R^{2} and R^{3} and also write 7 L1 CO 4 PO 2 there diagraph.

OR

4 d. Consider the Fig. 1 Hasse diagram of a Poset (A, R) given below,

$6 \quad$ L1 \quad CO4 \quad PO2
If $B=\{c, d, e\}$ find;
i) All upper bounds of B
ii) All lower bounds of B
iii) The LUB of B
iv) The GLB of B
e. Define least element, greatest element, minimal element, maximal element of a relation R on A.
f. Define partially ordered set and draw the Hasse diagram of all positive divisors of 36 .
$7 \quad \mathrm{~L} 1 \quad \mathrm{CO} 4 \quad \mathrm{PO} 2$

L1 CO4 PO1

UNIT - V
5 a. Define isomorphism. Verify the following graphs are isomorphic or not. Justify your answer.

6 L1,5 CO5 PO1
b. Discuss on Konigsberg bridge problem related to origin of graph theory.

7
L6 CO5 PO1
c. Define rooted tree, M-ary tree and balanced tree with an example for each.

