P20 N	ИСА13		Pa	ge No.	1				
	<i>U.S.N</i>								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, Master of Computer Applications (MCA) Semester End Examination; April / July - 2021 Mathematical Foundation for Computer Applications Time: 3 hrs									
Course Outcomes									
 The Students will be able to: CO1: Explain the principles of counting and set theory. CO2: Identify the quantifiers and their uses and Make use of fundamentals of logic theory. CO3: Apply the mathematical induction principle and different methods to solve the given problems. CO4: Solve the problems using the concepts of relations and functions and identify the different ways of representing relations. CO5: make use of basic concepts of graph theory and solve the given problem. <u>Note:</u> I) Answer any FIVE full questions, selecting ONE full question from each unit. II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory. 									
	III) Each unit carries 20 marks.		. 2						
Q. No.	Questions	Marks	BLs	COs	POs				
UNIT - I									
1 a. How many 6 characters license plates are created which consists of									
	2 alphabets followed by 4 digits such that,	6	L1	CO1	PO2				
	i) Without any restrictionii) Without repetition of a alphabets and digits								
b	A certain question paper contains 2 parts A and B each containing	σ							
0.	4 questions. How many different ways a student can answer 5 question		L1	CO1	PO2				
	by selecting at least 2 questions from each part?								
c.	Find the number of permutations of the letter of the following words:i) PROGRESSii) TOPOLOGYiii) ENGINEERING	7	L1	CO1	PO2				
	OR								
1 d.	Prove that $(\overline{A\Delta B}) = A\Delta \overline{B} = \overline{A}\Delta B$ by membership method.	6	L5	CO1	PO1				
e.	Find the number of integers between 1 to 200 that are,								
	i) Divisible by either 2 or 5 or 9	7	L1	CO1	PO2				
C	ii) Not divisible by 2 or 5 or 9								
f.	A fair die is tossed twice, find the probability that;	7	т 1	001	DO2				
	i) Even numbers occurs on both throws	7	L1	CO1	PO2				
ii) An even number occur atleast one throw UNIT - II									
2 a. Define tautology. Prove that for any proposition p , q and r the compound									
2	proposition.	6	L1	CO2	PO1				
	$[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology using truth table.	Ŭ		202	1				
		h							

P20MCA13			Page No 2			
b.	b. Demonstrate symbolically and check validity of the given argument.					
	If Ravi goes out with friends, he will not study					
	If Ravi does not study, his father becomes angry	7	L2	CO2 PO2		
	His father is not angry					
	Therefore Ravi has not gone out with friends					
c.	Outline a direct proof of the statement "the square of an odd integer is an	7	L2	CO2 PO1		
	odd integer".	/	L2	02 101		
	UNIT - III					
3 a.	Prove by mathematical induction that for all positive integer					
	$n \ge 1, 1+2+3+4++n = \frac{1}{2}n(n+1).$	6	L5	CO3 PO1		
b.	Solve a recursive definition for the sequence,	-	1.0			
	<i>i</i>) $a_n = 5_n$ for $n \ge 2$ <i>ii</i>) $a_n = 3_n + 7$ for $n \ge 2$	7	L3	CO3 PO2		
c.	Define one-one functions, onto functions and find the number of one-one	_				
	functions from a set of <i>m</i> elements to a set of <i>n</i> element.	7	L1	CO3 PO3		
	OR					
3 d.	Define the following terms:					
	i) Identity function ii) Constant function	8	L1	CO3 PO2		
	iii) Ceiling function iv) Floor function					
e.	State pigeon hole principle. Find the least number of ways of choosing					
	three different numbers from 1 to 10 so that all choices have the	7	L1	CO3 PO2		
	same sum.					
f.	i) Let A and B be finite sets with $ A = m$ and $ B = n$. Find how many					
	functions are possible from A to B?	5	L1	CO3 PO2		
	ii) if there are 2187 functions from A to B and $ B = 3$, what is $ A = ?$					
UNIT - IV						
4 a.	Let $A = \{1, 2, 3, 4, 6\}$ and R be a relation on A defined by aRb iff a is					
	multiple of b represent R as a set of ordered pairs. Design the diagraph	6	L6	CO4 PO1		
	and matrix representation of R.					
b.	Prove that the relation $R = \{(1, 1) (1, 2) (2, 1) (2, 2) (3, 4) (4, 3)$					
	$(3, 3) (4, 4)$ is an equivalence relation defined on the set $A = \{1, 2, 3, 4\}$.	7	L5	CO4 PO1		
	Also determine the partition induced.					
c.	If $A = \{1, 2, 3, 4\}$ and R is a relation on set A defined by					
	$R = \{(1, 2) (1, 3) (2, 4) (3, 2) (3, 3) (3, 4)\}$ find R^2 and R^3 and also write	7	L1	CO4 PO2		
	there diagraph.					

P20MCA13

4 d. Consider the Fig. 1 Hasse diagram of a Poset (A, R) given below,

6 L1 CO4 PO2

If $B = \{c, d, e\}$ find;

i) All upper bounds of B

ii) All lower bounds of B

iii) The LUB of B

iv) The GLB of *B*

divisors of 36.

- e. Define least element, greatest element, minimal element, maximal element of a relation *R* on *A*.
 f. Define partially ordered set and draw the Hasse diagram of all positive 7 L1 CO4 PO1
 - UNIT V
- 5 a. Define isomorphism. Verify the following graphs are isomorphic or not. Justify your answer.

- b. Discuss on Konigsberg bridge problem related to origin of graph theory. 7 L6 CO5 PO1
- c. Define rooted tree, M-ary tree and balanced tree with an example for each.
 7 L1 CO5 PO2

* * *