P20M	CAD151												Pag	e No	. 1
-								U.S.N	Τ						
Time:		First S	<i>Auton</i> Semes mester	omou ter, N r Enc	s Insti A.Tec l Exa	<i>tution</i> ch (mina	<i>affili</i> Civil tion	ated to Engine April	<i>VTU</i> neeri 1 / Ju	, <i>Bela</i> ng (N 11y - 2	gavi) ACA 021	D) ents	1 ax. Ma	urks. 1	00
Time.	5 10 5				Ca	ourse (Dutcor	nes				111	л. ши	11.5. 1	00
CO1: A CO2: T CO3: A CO4: c <u>Note</u> : I	dents will be pply statistice est goodness dopt differen arry out relia Answer any Answer any	al princip of fit of d t acceptan bility ana FIVE ful	listributi nce and Ilysis an Il questi	on in th rejecti d comp ons, se	he data on test: oute rel lecting	t. s for st liabilit ONE	rengtl y inde. full qu	n and ot x for the vestion f	her pa given from ea	design ach uni	n detai it.	ls.			
	l) Each unit c Use of statist				Missin	g data	, if an	y, may	suita	bly be	assun	ned.			
Q. No.	ose of sidilar	icui iubic	5 anone		NIT -	Ι					I	Marks	BLs	COs	PC
1 a.	The follow mean, stand Determine 279	dard dev the chan	iation a	and co	efficie	nt of s	variat than 6	ion. Plo		stogra		10	L4	CO1	PO
b.	Calculate t data. What x y		nfer?	T	25	25 29	X an 30 26	34 3	38	ollowi 50 15	ng	10	L4	CO1	PO
					OR										
1 d. e.	List the pro i) Normal of The mean	distributi	on					ributio standa		viation	is	10	L1	CO1	PO
	0.4 kN/mm is the proba i) Normal ii) Log nor	ability of distribut	surviv ion	al of tl	-		-			m^2 , w^2	hat	10	L4	C01	PO
	II) LOG IIO	iniai uist	11000101		NIT -	п									
2 a.	Fit a straig	ht line fc	or the fo												
	x	71	68	73	69	67	65	66	67			10	L4	CO2	PO

P20MCAD151

Page No... 2

b. Find the least square polynomial approximation of degree two for the following data: 10 CO2 PO1,2 L4 0 1 2 3 4 х 4 11 20 -4 y -1**UNIT - III** 3 a. A simply supported beam of span 'l' is under a uniformly distributed load of 10 kN/m. Establish the statistics of maximum bending moment. 10 CO3 PO1,2 L4 Given: l = N (5.3, 0.2) m and W = N (25.5, 5.7) kN/m. b. A Cantilever beam of span 'l' is subjected to a point load 10 kN at the free end. Establish the statistics of maximum deflection. Given; 10 L4 CO3 PO1,2 W = N (20, 5) kN,l = N(2.7, 0.1) m, $E = N (2 \times 10^5, 0.2 \times 10^5) \text{ N/mm}^2$ $I = N (5400 \times 10^6, 270 \times 10^6) \text{ mm}^4$ UNIT - IV A steel beam, whose cross section is classified as a compact section, 4 a. this implies that its moment carrying capacity is the plastic moment computed as $M_p = f_y \times Z$, where Z=plastic section modulus and f_y = yield strength. The total load effect is denoted by M, which is the maximum moment demand on the beam due to the applied loading. The strength limit state function is $g(x) = f_y \cdot Z - M$. Solve the problem

by FOSM method and compute;

10 L4 CO4 PO1,2

i) Reliability indexii) The risk or Probability of failureGiven;

Variable	Mean	Standard deviation
f_y	275.8 N/mm ²	34.475 N/mm ²
Ζ	819353.2 mm ³	40967.66 mm ³
М	1.1298×10^8 N-mm	22.596 ×10 ⁶ N-mm

b. A tension element of circular cross section subjected to external load. The limit state function $g(x) = f_y$. A - P. Solve the problem by FOSM method compute the reliability index, probability of success and probability of failure. Given;

Variable	Mean	Standard deviation			
Load <i>P</i> (N)	2.6689×10^{4}	1.7774×10^{3}			
Yield f_y (N/mm ²)	1.0755×10^{9}	2.9576×10^{7}			
Diameter $d(m)$	0.5842×10^{-2}	0.0759×10^{-3}			

10 L4 CO4 PO1,2

4 d. Determine the reliability index of a simply supported beam of span 'l' subjected to uniformly distributed load w/m at the limit state of flexure. The failure surface is given by,

$$g(x) = f_y \cdot Z - \frac{wl^2}{8}$$
. Solve the problem by Hasofer-lind method

Perform one complete iteration. Given;

Variable	Mean	Standard deviation		
Characteristic f_y strength $N(mm^2)$	272.41	13.62		
Section modulus $Z(mm^3)$	3662.48×10^{3}	366248		
Load w (N/m)	20.052	3.008		
Span L (mm)	7082.54	354.13		

5 a. The strength of an axially loaded short column is given by $R = 0.67C.A_c + A_s.F$. Where *C* is the cube strength of concrete. *F* is the yield strength of steel. A_c is the area of steel. Generate the statistics of *R* (10 values). Compare the values with the theoretical values also find the percentage error. Given;

Variable	Mean	Standard deviation
$C(N/mm^2)$	19.54	4.1
$F(N/mm^2)$	469	46.9
$A_c (\mathrm{mm}^2)$	125000	-
$A_s (\mathrm{mm}^2)$	1250	-

OR

5 d. The strength of an axially loaded column is given by $R = A_c . c + A_s F$ Where *C* is the cube strength of concrete. *F* is the yield strength of steel. A_c is the area of concrete and A_s is the area of steel. The column is subjected to an axial load Q = N (1800, 540) kN. Generate the statistics of *R* and *S* (10 values) count the number of failures. Also find probabilities of failure. Given;

Variable	Mean	Standard deviation			
$C(N / mm^2)$	19.5	4.1			
$F(N/mm^2)$	485	50			
$A_c (\mathrm{mm}^2)$	135000	500			
$A_s (\mathrm{mm}^2)$	1250	25			

20 L4 CO4 PO1,2

20 L4 CO4 PO1,2