

algorithm. The dotted line represents the initial partitioning.

10 L2 **CO1** PO₃

Illustrate the pin assignment along with example in chip planning. 8 IACO₂ **PO5** 2 a.

For the given floor-plan shown in figure, generate its slicing tree, b. vertical constraint graph and horizontal constraint graph.

	bC	
æ	d	C
- -	+	
9	h	L

P20MECE13

CO3

CO₂

L2

L4

10

10

L2

CO₂

PO5

PO1

PO₅

- c. Three blocks *a*, *b*, and *c* given along with their size options as shown in figure.
 - i) Determine shape functions for each block *a*, *b*, *c*
 - ii) Find the minimum area of the floor-plan using both horizontal and vertical composition and its corresponding slicing tree8

UNIT - III

3 a. Illustrate the rectilinear routing in global routing.

b. Perform min-cut placement to place gates a - g on a 2×4 grid as shown in figure. Use Kernighan-Lin algorithm for partitioning. Use alternating cutline's. The cutline cut1 represents the initial vertical cut. Each edge on grid has capacity $\sigma_p(e) = 2$. Estimate whether the placement is routable.

OR

3 d. Discuss the optimization goals in global routing.

e. For the graph with weighs (w_1, w_2) as shown below figure. Use Dijkstra's algorithm to find a minimum cost path from the starting node s = a to the target node t = i generate table for groups 2 and 3.

P20 M	IECE13	Page No 3						
UNIT - IV								
4 a.	Illustrate geometric matching based algorithm.	5	L4	CO2	PO5			
b.	Briefly explain multiple clock routing.		L2	CO1	PO5			
c.	Illustrate DME algorithm.	9	L4	CO2	PO5			
OR								
4 d.	Discuss design style specific problems on clock routing.	6	L2	CO1	PO3			
e.	Briefly explain skew and delay reduction by pin assignment.		L2	CO2	PO5			
f.	Illustrate the H-tree based algorithm.	8	L4	CO2	PO5			
	UNIT - V							
5 a.	Illustrate delay budgeting with zero slack algorithms.	10	L4	CO4	PO3			
b.	Illustrate timing driven placement in timing closure.	10	L4	CO4	PO5			
OR								
5 d.	Briefly explain net list restructuring in physical synthesis.	10	L2	CO4	PO5			
e.	Illustrate performance driven design flow in timing closure.	10	L4	CO4	PO3			

* * *