	<i>U.S.N</i>									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M. Tech - VLSI Design and Embedded System (MECE) Semester End Examination; April / July - 2021										
Time	: 3 hrs	Λ	Iax. N	Iarks: 1	100					
10/100	Course Outcomes		10000 11							
CO1: CO2: CO3: CO4:	tudents will be able to: To gain knowledge of Verilog modeling in term of digital system and Embedded To obtain insight to design challenges, techniques, methodology, performance cr To be able to design and develop Verilog model of digital logic circuits and applications, prepare and present a report. To be able analyze synthesis report of digital logic circuits and come up with o	riteria and ad simple	Embed	lded syst						
learning and research. <u>Note</u> : I) Answer any FIVE full questions, selecting ONE full question from each unit.										
II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.										
11 Q. No.	I) Each unit carries 20 marks. IV) Missing data, if any, may suitably be as: UNIT - I	sumed. Marks	BLs	COs	POs					
Q. No. 1a.	Describe the design methodology for hardware and software co-design		DLS	COS	105					
14.	with flowchart.	10	L1	CO1	PO5					
b.	Discuss BCD code and 7 segment decoder.	6	L3	CO1	PO5					
c.	Develop a verilog model for a 4-to-1 multiplexer.	4	L3	CO1	PO5					
	UNIT - II									
2 a.	Explain the operation of resizing unsigned integers.	6	L2	CO2	PO3,5					
b.	Design a circuit that counts 16 clock cycles and produces a control	8	L3	CO^{2}	PO3,5					
	signal, ctrl, that is 1 during every eight and twelth cycle.	0	LJ	02	105,5					
c.	Design a circuit for a Modulo-10 counter, otherwise known as a decode counter.	6	L3	CO2	PO3,5					
	UNIT - III									
3 a.	Design a $64k \times 8$ -bit composite memory using four $16k \times 8$ -bit components.	8	L3	CO3	PO2,3,5					
b.	Develop a verilog model of a dual-port, $4k \times 16$ -bit flow through									
	SSRAM. One port allows data to be written and read, while the other	8	L3	CO3	PO2,3,5					
	port only allows data to be read.									
c.	Explain the synchronous static RAM with timing diagram.	4	L2	CO3	PO2,3,5					
	OR									
3 d.	Discuss in detail the multiport memories.	6	L2	CO2,3						
e.	Discuss an internal organization of CPLD.	10	L2	CO2,3						
f.	Describe differential signaling. How does it improve noise immunity?	4	L1	CO3						

Page No... 1

P20MECE142			Page No 2				
	UNIT - IV						
4 a.	Design and synthesize of a sequence recognizer.	10	L4	CO4	PO5		
b.	Develop and synthesize of a Moore type NRZ to Manchester line	10	L4	CO4	PO5		
	code counter.	10	L4	04	105		
	OR						
4 d.	Design and synthesize a sequential machine whose inputs are clock						
	and reset and whose outputs are clk_by_6 and clk_by_10 (i.e, clock	10	L4	CO4	PO5		
	divider outputs that divide clk_by_6 and 10 respectively).						
e.	Develop, verify and synthesize a frequency divider with programmable	10	L4	CO4	PO5		
	divisor for the base frequency and a programmable duty cycle.						
	UNIT - V						
	Develop, verify and synthesize count gray-bin, a 4-bit counter that can	10	L4	CO4	PO5		
	count in gray or in binary code, depending on an input mode.						
b.	Discuss how to describe a synchronous reset condition using verilog?	10	L4	CO4	PO5		
OR							
5 d.	Design the architecture of synchronous 4-bit binary counter.	10	L4	CO4	PO5		
e.	Explain the partitioned sequential machine.	10	L4	CO4	PO5		

* * *