U.S.N					

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, M. Tech - VLSI Design and Embedded System (MECE)

Somester End Examination: April / July 2021

Semester End Examination; April / July -2021 SOC Design

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: To Memorize the system architecture, components of system hardware and software, external and internal memory of SOC and organization, interconnect architectures Like AMBA, NOC.
- CO2: To gain the knowledge of processor architecture, instructions, delays for the optimised solution, reconfigurable device, error detection and correction.
- CO3: To be able to understand the applications of System on Chip, prepare and present a report.
- CO4: To be able to apply the knowledge gained in system on chip for the optimization of time, area, power, reliability, configurability, memory design and interconnect architectures through self learning and research.
- Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.
 - II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
 - III) Each unit carries 20 marks. IV) Missing data, if any, may suitably be assumed.

Q. No.	UNIT - I	Marks	BLs	CO	РО			
1a.	With the help of neat diagram, discuss processor architecture and	8	L1	CO1	PO5			
	its implementation.	O	Li	COI	103			
b.	Explain basis SOC System model and give example of its applications.	8	L2	CO2	PO3			
c.	List SOC software and hardware design benefits and its drawbacks.	4	L3	CO3	PO2			
	OR							
1 d.	Describe the operation of simple sequential and pipelined processor	10	L2	CO3	PO2			
	with the help of neat diagram.	10	L2	CO3	102			
e.	Explain the vector processor model with the help of neat figure.	5	L2	CO3	PO2			
f.	Explain with component model engineering cost for SOC	5	L1	CO1	DO5			
	development.	3	LI	COI	103			
UNIT - II								
2 a.	Explain optimization of pipeline processor design.	8	L2	CO2	PO5			
b.	Discuss the baseline floor plan and explain the summary of area	10	L3	CO4	DO2			
	design rules.	10	L3	CO4	FU3			
c.	Describe scrubbing test.	2	L1	CO2	PO3			
	OR							
2 d.	Describe the five basis SOC tradeoffs to provide a framework for	6	L2	CO2	DO2			
	analyzing SOC.	6	L2	CO2	PO3			
e.	Describe how SOC dealt with physical faults?	10	L3	CO4	PO3			
f.	Describe area-time power tradeoffs in processor design.	4	L1	CO2	PO3			

P20MECE143				Page No 2			
UNIT - III							
3 a.	What are scratch pads and cache memory? Mention three principles	8	L2	CO4 PO	O3		
	involved in cache process.	O	112	CO+ 1	03		
b.	Describe the cache organization.	10	L3	CO ₄ Po	О3		
c.	Mention and explain three replacement policies that are widely used.	2	L1	CO ₄ Po	О3		
OR							
3 d.	Explain SOC internal memory with placements.	6	L3	CO ₄ Po	О3		
e.	Write a block diagram of memory chip. With the waveform, explain	8	L2	CO4 PO	Ω3		
	DRAM chip timing.	O	112	CO+ 1	03		
f.	Discuss the memory buffers.	6	L1	CO ₄ Po	О3		
4 a.	Discuss a simplified block diagram of an SOC module in a	6	L2	CO1 PO	Ω5		
	system context.	O	L2	CO1 10	03		
b.	Explain the concept of arbitration and protocols.	6	L1	CO1 PO	O5		
c.	With the help of a neat diagram, explain the layered architecture of	8	L2	CO3			
NOC and mention the number of benefits.		O	L/L	PO	O2		
UNIT - V							
5 a.	What are three common means of implementing computations?	6	L3	CO ₂ PO	О3		
b.	Describe the typical tool flow for an FPGA.	7	L3	CO ₂ PO	O5		
c.	Explain with neat figure CUSTARD micro architecture showing	7	L2	CO4 PO	Ο3		
	threading register file, and forwarding network parameterization.	,	<i></i>		<i></i>		