P.E.S. College of Engineering, Mandya - 571401
(An Autonomous Institution affiliated to VTU, Belagavi)
First Semester, M.Tech. - Mechanical Engineering (MMDN)
Semester End Examination; April / May -2021 Finite Element Analysis
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Explain the concept of finite element method, finite element discretization process and methods of deriving finite element equations and Solve one-dimensional structural problems..
CO2: Construct finite element equations for two-dimensional and three-dimensional elements and Analyze twodimensional plane stress and strain problems.
CO3: Construct finite element equations for axi-symmetric and plane truss elements and Solve axi-symmetric and plane truss problems.
CO4: Develop finite element equations for beams and dynamic problems and estimate bending moment, shear force and stress in beam and natural frequencies and mode shape of one-dimensional structural problem.
CO5: Develop finite element equations for three-dimensional heat transfer problems and estimate temperature distribution and heat flow in composite walls and fins.
Note: I) Answer any FIVE full questions, selecting ONE full question from each unit.
II) Any THREE units will have internal choice and remaining TWO unit questions are compulsory.
III) Each unit carries 20 marks.

OR

1 d. List the steps involved in finite element method.
e. List the points to be considered while placement of nodes during discretization process.
f. A steel bar of length 800 mm is subjected to an axial load of 3 kN as shown in Fig. Q. 1(f). Determine the nodal displacements by treating bar as quadratic bar element.

UNIT - II

2 a. Show that interpolation function for linear triangular elements is given by $N_{i}=1 / 2 A_{e}\left(a_{i}+b_{i} x+c_{i} y\right)$ where $i=1,2,3$.
b. For linear triangular element,
$N_{1}=\frac{1}{16}(40-3 x-4 y) \quad N_{2}=\frac{1}{16}(-16+4 x) \quad N_{3}=\frac{1}{16}(-8-x+4 y)$
L3 CO2 PO1,2
Determine the strain displacement matrix.

UNIT - III

3 a. Obtain [B] matrix in case of axi-symmetric triangular element.
b. For the two bar truss shown in Fig. Q. 3(b). A force of 1000 kN is applied at node 1 , while node 1 settles an amount $\delta=50 \mathrm{~mm}$ in the negative direction. Take $E=210 \mathrm{GPa}$ and $A=66 \times 10^{-4} \mathrm{~m}^{2}$ for each element. Determine the nodal displacements.

UNIT - IV

4 a . For a beam element, write down the shape function in terms of global coordinates. Sketch their variation across the elemental length.
b. For the beam shown in Fig. Q. 4(b), determine the rotation at B and C.

OR

4 d . What is the difference between static and dynamic analysis. Give example.
e. Consider the axial vibration of steel bar shown in Fig. Q. 4(d). Develop the global stiffness and mass matrix. $E=200 \mathrm{GPa}$ and $\rho=7830 \mathrm{~kg} / \mathrm{m}^{3}$.

UNIT - V

5 a. Derive element conductivity matrix for a 1D heat conduction problem.
b. A composite wall consists of three materials, as shown in the Fig. Q 5(b). The inside wall temperature is $200^{\circ} \mathrm{C}$ and the outside air temperature is $50^{\circ} \mathrm{C}$ with a convection coefficient of $h=10 \mathrm{~W}\left(\mathrm{~m}^{2} . \mathrm{K}\right)$. Find the temperature along the composite wall

$$
\kappa_{1}=70 \mathrm{~W} /(m \cdot K), \quad \kappa_{2}=40 \mathrm{~W} /(m \cdot K), \quad \kappa_{3}=20 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K})
$$

$t_{1}=2 \mathrm{~cm}, \quad t_{2}=2.5 \mathrm{~cm}, \quad t_{3}=4 \mathrm{~cm}$

OR

d. Explain the types of boundary conditions in heat transfer problem.
e. Calculate the temperature distribution of one dimensional fin with the physical properties given below in Fig.Q. 5 (d). Assume that convection heat loss occurs from the end of the fin. Model the fin by two elements.
$8 \quad$ L2 CO3 PO1

Fig.Q. 1 (f)

Fig. Q. 3(b)

Fig. Q. 4. (b)

Fig. Q. 5(b)

Fig. Q. 4. (d)

Fig. Q. 5(d)

