	U.S.N				
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M.Tech Mechanical Engineering (MMDN) Semester End Examination; April / May - 2021 Tribology and Bearing Design					
Time:		Л	Iax. I	Marks:	100
	Course Outcomes				
CO1: E o CO2: D CO3: A c	dents will be able to: Explain nature of surface and parameters used in characterizing surface rough f friction and different wear mechanism. Describe the pressure development mechanism in fluid film bearings and develop Apply Reynolds equation to pad and plain bearings to estimate pressure dis apacity.	o Reynolds stribution	s 2D e and l	quation. oad car	
	pply Reynolds equation to hydrostatic bearings and evaluate load carrying cap Develop governing differential equations for gas and porous bearings.	асну, јпс	tional	torque.	
	 Answer any FIVE full questions, selecting ONE full question from each unit. Any THREE units will have internal choice and remaining TWO unit question. Each unit carries 20 marks. IV) Missing data, if any, may suitably be Use of data handbook is permitted. 		•	ory.	
Q. No.	UNIT - I	Marks	BL	COs	POs
1 a.	Define wear. Explain Adhesive wear and Abrasive wear.	10	L2	CO1	PO2
b.	Explain surface analysis in brief.	10	L1	CO1	PO2
	OR				
1 d.	Explain Newton's law of viscous flow.	10	L2	CO1	PO2
e.	Explain different regines of lubrication.	10	L2	CO1	PO2
	UNIT - II				
2 a.	Derive an expression for flow between stationary parallel plates with assumptions.	10	L2	CO2	PO2
b.	Tanks <i>A</i> and <i>B</i> are connected by a capillary tube and the system is filled with a liquid of viscosity 2cP. The manometric pressure in tank <i>A</i> and <i>B</i> are 0.01 and 0.04 MPa. The outer diameter of tube is 0.000835 mm with wall thickness 0.0001mm. The length of capillary is 2000 mm. assuming laminar flow, determine the rate of flow through the capillary tube.	10	L3	CO2	PO3
	OR				
2 d.	Derive an expression for power loss in lightly loaded journal bearing with assumptions.	8	L2	CO2	PO2
e.	Derive Reynolds 2D equation with assumptions.	12	L2	CO2	PO2

P20MMDN141 Page No... 2 UNIT - III Determine the load carrying capacity, frictional force, coefficient of 3 a. friction and power loss due to friction for an ideal full journal bearing having following specifications: 10 L3 CO3 PO₃ Dia of journal 5 cm, length of the bearing 6.5 cm, speed of journal 1200 rpm, radial clearance 0.0025 cm, average viscosity 1.6×10^{-6} reyn, attitude 0.8. List out the steps in design of journal bearing. 10 CO3 b. L1 PO1 UNIT - IV 4 a. Derive an expression for load carrying capacity of 12 L2 CO4 **PO2** hydrostatic bearing. b. Explain types of hydrostatic lubrication system. 8 L1 CO4 **PO1** OR 4 d. A hydrostatic circular thrust bearing has the following data: Shaft dia = 300 mm, pocket dia = 200 mm, shaft speed = 100 rpm, pressure at the pocket = 500 kN/m^2 . Film thickness = 0.07 mm, 10 viscosity of lubricant = 0.5 Pas. Determine; CO4 L3 PO₃ i) Load carrying capacity ii) Oil flow rate iii) Power loss due to friction A hydrostatic step bearing has the following data: e. Dia of shaft = 150 mm, pocket dia = 100 mm, vertical thrust on bearing = 60×10^3 N, external pressure = atm pressure, shaft speed = 1500 rpm, viscosity of lubricant = 30 cP, desirable oil film 10 L3 CO4 PO₃ thickness = 0.0125 cm Determine; i) Rate of flow of oil ii) Power loss due to friction iii) Coefficient of friction UNIT - V Explain with a neat sketch, the working of active magnetic bearing. 5 a. 10 L2 CO5 PO2 Explain porous bearing with governing differential equation. 10 L2 CO5 **PO2** b.