P20MMDN152				Pag	ge No I										
		U.S.N													
P	.E.S. College of Engineering	ng, Mandya -	571 40	1											
(An Autonomous Institution affiliated to VTU, Belagavi) First Semester, M.Tech Mechanical Engineering (MMDN) Semester End Examination; April / May - 2021															
								Time: 3 hrs Max. Marks: 100							
								Course Outcomes							
The Students will b		nabza arparimental da	ta												
CO1: Explain the concept of data acquisition, processing and analyze experimental data. CO2: Explain electrical resistance strain gauges and strain rosettes circuits for strain measurements and															
potentiomet															
CO3: Apply methods of photo elasticity and analyze stress strain behavior of solid bodies. CO4: Analyze stress strain behaviour of solid bodies using different coating techniques.															
CO5: Make use of holography and moiré techniques in experimental stress analysis.															
	ny FIVE full questions, selecting ONE full qu EE units will have internal choice and remain	·	ng ara aom	nulsor	.,										
, ,	t carries 20 marks. IV) Missing data, if a	0 1		puisor	y.										
Q. No.	UNIT - I			BLs	COs POs										
-	is data acquisition system? Explain th	e major elements of													
	l data acquisition system with a block dia	2	10	L2	C1										
•															
	l of least square.														
memor		2.5	10	L3	C1										
	Y_i 1.2 2.0 2.4 3.5 X_i 1.0 1.6 2.4 4.0														
	X_i 1.0 1.6 3.4 4.0	5.2													
	UNIT - II														
2 a. Derive		of an electrical	10	L3	C2										
	nce gauge.														
b. The fol	llowing readings of strain were obtained of	on a rectangular strain													
rosette	mounted on an aluminum for which E	= 70 GPa, γ = 0.32,													
$\epsilon_a = 28$	85×10^{-6} , $\epsilon_b = 65 \times 10^{-6}$, $\epsilon_c = 102 \times 10^{-6}$. De	etermine the principal	10	L3	C2										
strains,	, principal strain directions, principal st	resses and maximum													
shear s	tress.														
	OR														
2 d. With n	eat circuit diagram, explain calibrations o	f potentiometer.	10	L2	C2										
e. Derive	an expression for principal stresses, str	ains, maximum shear	10	тэ	\mathbf{C}^{2}										
stress a	and principal directions for a delta strain g	auge rosette.	10	L2	C2										
UNIT - III															
3 a. State s	stress optic law. Derive an expression	for stress optic law	10	T 0	C 2										
annlied	to 2-D photo elasticity		10	L2	C3										

applied to 2-D photo elasticity.

P20MMDN152			Page No 2			
b.	b. With neat sketch, develop the expression for the effect of a stressed model in a plane polariscope dark field set up.		L2	C3		
OR						
3 d.	Explain Tardy's method of compensation to measure fractional fringe	10	L2	C3		
	order at a point.	10		23		
e.	e. Explain shear difference method.		L2	C3		
	UNIT - IV					
4 a.	Explain the principle of brittle coating technique. Mention their	10	L2	C4		
	advantages and disadvantages.					
b.	 What are the assumptions made while analyzing brittle coating? Derive an expression for coating stresses. 		L2	C4		
OR						
4 d.	Explain the calibration of brittle coating material.	10	L2	C4		
e.	Explain the different types of coating materials.	10	L2	C4		
	UNIT - V					
5 a.	What is holography? Explain the fundamental principle of	10	L2	C5		
	hologram formation.	10				
b.	Describe the geometrical approach in Moire fringe analysis	10	L2	C5		
	considering the case of pure extension without rotation.					

* * *