U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Computer Science and Engineering Semester End Examination; July/August - 2022 Theory of Computation

Time: 3 hrs Max. Marks: 100

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks
	I: PART - A	10
I a.	Define DFA.	2
b.	Define Regular Expression.	2
c.	Write CFG for the CFL $L = \{a^nb^{2n} \mid \ge 0\}.$	2
d.	Define DPDA.	2
e.	Define TM.	2
	II : PART - B	90

II : PART - B	90
UNIT - I	18

- 1 a. Design a DFA to recognise all the strings, over $\Sigma = \{a, b\}$, which ends with 'aba'.
- b. Convert the following NFA into its equivalent DFA and hence state the language recognised by the same.

Fig Q1(b)

c. Convert the following €-NFA into its equivalent DFA and hence state the language recognised by the same.

Fig Q1(c)

UNIT - II

18

9

9

- 2 a. Write regular expression for the following regular languages over $\Sigma = \{a, b\}$
 - i) Ends with either abb or aba or aab

ii) $L = \{a^i b^j \mid (i+j) \text{ is even}\}$

iii) $|W| \mod 3 = 2$

9

P17CS43		. 2
b.	State and prove pumping lammra for regular languages.	9
c.	Prove that for every regular expression ,R, representing the regular language L(R), there is	0
	an equivalent DFA,M such that $L(M) = L(R)$.	9
	UNIT - III	18
3 a.	Write CFG for the following CFLs:	
	i) L= $\{a^i b^j c^k \mid i = j \text{ or } j = k \text{ or } k = i\}$	0
	ii) L= $\{a^i b^j c^k \mid i=3(j+k)\}$	9
	iii) Palindrome over $\sum = \{a, b\}$	
b.	Define ambiguous grammar and hence prove that the following grammar is ambiguous	0
	E→E+E E*E id	9
c.	Convert the given CFG into its equivalent PDA	0
	E→E+E E*E id	9
UNIT - IV		
4 a.	Design PDA for the following CFL L= $\{a^ib^jc^k \mid i=j+k\}$	9
b.	Design PDA to recognise the CFL, L={W \in {a,b}* n _a (W)= nb(W)}. State whether the	0
	resultant PDA is DPDA/NPDA. Justify your answer.	9
c.	Define PDA, Instantaneous description a PDA and language accepted by PDA.	9
	UNIT - V	18
5 a.	Design TM to recognize the language $L = \{a^n b^n c^n \mid n \ge 0\}$	9
b.	Explain any two extensions of TM.	9
c.	Explain recursively enumerable languages and post's correspondence problem.	9

* * * *