U.S.N

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Semester End Examination; July / August - 2022
Engineering Mathematics - IV
(Common to EE, EC, CS\&E, IS\&E Branches)
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting \boldsymbol{O} NE full question from each unit.
Q. No.

Questions

UNIT - I

1 a. Find a real root of the equation $x \log _{10} x=1.2$ convert to five decimal places using the

Newton-Raphson method.
b. Find real root of an equation $\cos x=3 x-1$ correct to three decimal place using Regula falsi method.
c. Find a real root of the equation $x^{3}-x-1=0$ using fixed point iteration method. Acceleration the convergence by Aitkin's Δ^{2} method carry out three iterations.

2 a. Using Runge-Kutta method of fourth order. Find y (0.2) for the equation $\frac{d y}{d x}=\frac{y-x}{y+x}$, $\mathrm{y}(0)=1$ taking $\mathrm{h}=0.1$
b. Apply modified Euler's method to find $y(0.1)$ given that $\frac{d y}{d x}=x^{2}+y, \quad y(0)=1$, by taking $\mathrm{h}=0.05$. Considering two approximations in each step.
c. Apply Adam-Bashforth method to solve the equation $\left(y^{2}+1\right) d y-x^{2} d x=0$ at $x=1$ given data $\mathrm{y}(0)=1, \mathrm{y}(0.25)=1.0026, \mathrm{y}(0.5)=1.0206$ and $\mathrm{y}(0.75)=1.0679$ (applying corrector formula twice).

UNIT - II

3 a. Define vector space and subspace. Give with suitable examples
b. Find the change of basis matrix P from usual basis, $E=\left\{e_{1}, e_{2}, e_{3}\right\}$ of R^{3} to the basis $\mathrm{S}=\left\{\mathrm{w}_{1}=(1,1,1), \mathrm{w}_{2}=(1,1,0), \mathrm{w}_{3}=(1,0,0)\right\}$
c. Find Rank and nullity of the linear transformation.
$\mathrm{T}=\mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+\mathrm{z}, \mathrm{x}+\mathrm{y}+2 \mathrm{z}, 2 \mathrm{x}+\mathrm{y}+3 \mathrm{z})$
4 a. Apply Gauss-Seidal iterative method to solve the equations $27 x+6 y-z=85, \quad 6 x+15 y+2 z=72, \quad x+y+54 z=110$ perform three iterations.
b. Solve by relaxation method:
c. Determine the largest Eigen value and the corresponding Eigen vector of the matrix
$A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$ taking initially $[1,0,0]^{\mathrm{T}}$ (perform six iterations)

UNIT - III

5 a. Show that $f(z)=\sin z$ is analytic and hence find $f^{1}(z)$.
b. Find analytic function $f(z)$ as a function of z given that the sum of its real and imaginary part is $\mathrm{x}^{3}-\mathrm{y}^{3}+3 \mathrm{xy}(\mathrm{x}-\mathrm{y})$.
c. Find the bilinear transformation that maps the points $\mathrm{Z}_{1}=0, \mathrm{Z}_{2}=-\mathrm{i}, \mathrm{Z}_{3}=2 \mathrm{i}$ into $\mathrm{W}_{1}=5 \mathrm{i}$, $\mathrm{W}_{2}=\infty, \mathrm{W}_{3}=-\mathrm{i} / 3$

6 a. Evaluate $\int_{0}^{2+i}(\bar{z})^{2} \mathrm{dz}$ along the line $\mathrm{x}=2 \mathrm{y}$
b. Expand $f(z)=\frac{1}{(z-1)(2-z)}$ as Laurent's series valid, for
i) $|z|<1$
ii) $1<|z|<2$.
c. Using the Cauchy's residue theorem
$\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)}$ where C is the circle $|\mathrm{z}|=3$
UNIT - IV
7 a . In a certain distribution $\left\{x_{i} f_{i}\right\} i=1,2, \ldots n$. The first four moment about the point ' 5 ' are $-1.5,17,-30$ and 108. Calculate Skewness and kurtosis.
b. Fit a parabola for the following data:

$\mathrm{X}:$	1	2	3	4	5	6	7	8	9
$\mathrm{Y}:$	2	6	7	8	10	11	11	10	9

c. If θ is the angle between the two regression lines, show that $\tan \theta=\left(\frac{1-r^{2}}{r}\right) \frac{\sigma x \sigma y}{\sigma^{2} x+\sigma^{2} y}$

8 a. The probability distribution of a finite random variable $\mathrm{x}(\mathrm{x})$ is given by the following table find the value of K, mean and variance

$\mathrm{X}_{\mathrm{i}}:$	-2	-1	0	1	2	3
$\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right):$	0.1	k	0.2	2 k	0.3	k

b. The probability that a pen manufactured by a factory be defective is, $\frac{1}{10}$. If 12 such pens are manufactured. What is the probability that
i) Exactly 2 are defective
ii) At least 2 are detective
iii) None of them are detective
c. In a test an electric bulbs, it has found that the life time of a particular brand was distributed normally with an average life of 2000 hours and S.D of 60 hours. In a purchase 2500 bulbs, find the number of bulbs that are likely to last for
i) More than 2100 hours
ii) Less than 1950 hours
iii)Between 1900 to 2100 hours

Given $\phi(1.67)=0.4525 \quad \phi(0.83)=0.2967$
UNIT - V
9 a. The joint distribution of two random variables x and y is as follows:

X	-4	2	7
1	$1 / 8$	$1 / 4$	$1 / 8$
5	$1 / 4$	$1 / 8$	$1 / 8$

Find;
i) $E(x)$ and $E(y)$
ii) $E(x y)$
iii) σ_{x} and σ_{y}
b. Find the unique fixed probability vector for the regular stochastic matrix;

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\
0 & \frac{2}{3} & \frac{1}{3}
\end{array}\right]
$$

c. If x and y are continuous random variables the joint density function

$$
f(x, y)=\left\{\begin{array}{l}
c\left(x^{2}+y^{2}\right): 0 \leq x \leq 1 \tag{7}\\
0, \text { other wise }
\end{array}\right.
$$

Determine; i) Constant C
ii) $P(x<1 / 2, y>1 / 2)$
iii) $\mathrm{P}(1 / 4<\mathrm{x}<3 / 4)$

10 a . Obtain the series solution of the differential equation $\frac{d^{2} y}{d x^{2}}+x y=0$
b. Obtain $\mathbf{J}_{\mathrm{n}}(x)$ as a solution of the Bessel's differential equation $\mathrm{x}^{2} \mathrm{y}^{\prime \prime}+x \mathrm{y}^{\prime}+\left(\mathrm{x}^{2}-\mathrm{n}^{2}\right) \mathrm{y}=0$
c. State Rodrigue's formula express $x^{3}+x^{2}+x+1$ in terms of Legendre's polynomials.

