U.S.N										
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B. E Electronics and Communication Engineering										
Semester End Examination; July / August - 2022										
Analog and Digital Commun	icat	tior	1							
Time: 3 hrs						Ma	х. М	arks	s: 1	00

The Students will be able to:

CO1: Apply the basic knowledge of mathematics for Formulation and analysis of Random signals, Analog and Digital communication system.

Course Outcome's

- CO2: Ability to Analyze various aspects of sampling, quantizing, encoding, Analog and Digital signal modulation/transmission and demodulation/reception techniques
- CO3: Articulate the methods used for sampling, quantizing and analyze noise introduced in data transmission for designing a digital communication systems.
- CO4: Analyze the error probabilities and SNR of various modulation schemes with the knowledge of random process.
- *CO5: Apply* appropriate techniques, resources, and modern tools to **examine** and **design** elementary communication system for various modulation schemes and noise specification.

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks. ii) PART-B: Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions	Marks	BLs	COs	POs
2.1101	-		210	000	105
	I: PART - A	10			
I a.	Write any two difference between AM and FM modern techniques.	2	L1	CO1	
b.	List the properties of Gaussian process.	2	L1	CO1	
c.	Sketch the model waveform for the bit stream 1101101 for the NRZ unipolar scheme.	2	L2	CO2	
d.	Define slope overload distortion and Granular noise.	2	L1	CO2	
e.	Write any two differences between coherent and non coherent detection techniques.	2	L1	CO2	
	II: PART - B	90			
	UNIT-I	18			
1 a.	Explain the generation of AM using square law modulator.	9	L2	CO1	
b.	Explain time domain description of SSB modulates technique.	9	L2	CO1	
c.	With a neat black diagram, explain narrow band frequency modulation (generation).	9	L2	CO1	
	UNIT - II	18			
2 a.	Explain the Gram-Shmitt orthoganalization procedure with relevant block diagrams.	9	L2	CO2	
b.	Explain the properties of auto correlates and cross correlates functions.	9	L2	CO1	

P18EC42			Рад	Page No 2		
UNIT – III		18				
3 a.	A signal $g(t) = 10\cos(20\pi t)\cos(200\pi t)$ is sampled at the rate of					
	250 samples / sec.					
	i) Sketch the spectrum of the sampled signal.	9	L3	CO3		
	ii) Specify the cutoff ideal reconstructions filter so as to recover g(t)	,	L3	005		
	from gs(t)					
	iii) Specify the Nyquest rate.					
b.	Derive the Power Spectral Density (PSD) of polar NRZ signals and	9	L4	CO3		
	plot the spectrum.	7	L4	05		
с.	With a neat block diagram, explain the digital PAM transmission					
	through band limited base band channels and obtain the expression	9	L2	CO3		
	for ISI.					
	UNIT - IV	18				
4 a.	Explain Delta Modulation (DM) with block diagram and equations.	9	L2	CO2		
b.	Explain quantization error and derive an expression for maximum					
	Signal to Noise Ratio (SNR) in PCM system that uses linear	9	L2	CO2		
	quantization.					
с.	With a neat block diagram, explain adoptive delta modulation.	9	L2	CO2		
	UNIT - V	18				
5 a.	Derive probability of error for a coherent FSK system.	9	L3	CO4		
b.	Explain the working of disk transmitter and receiver with neat block	9	L2	CO4		
	diagrams.	7	L2	04		
с.	A binary data is transmitted over an AWGN channel using binary					
	PSK at a rate of 1MBPS. It is desired to have average probability of					
	error Pc $\leq 10^{-4}$. Noise power spectral density is $\frac{No}{2} = 10^{-12} w/Hz$.	9	L3	CO4		
	Determine the average carrier power required at the receiver input, if					
	the detector is of coherent type, Take $erfc(3.5) = 0.00025$					

* * * *