P18EC44		Pag	e No	. 1					
U.S.N									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Electronics and Communication Engineering Semester End Examination; July / August - 2022 Digital Signal Processing Time: 3 hrs Max. Marks: 100									
Course Outcome	1/10	<i>i</i> . <i>W</i>	<i>uns</i> . 1	00					
The Students will be able to: CO1: Apply mathematical knowledge to understand DFT, FFT and Filters CO2: Analyze discrete systems using DFT, FFT and filtering formulation CO3: Design the FIR & IIR filters for given specification CO4: Implement the discrete-time systems using various approaches CO5: Understand role of DSP in various applications Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.									
<i>ii) PART-B</i> Answer any <i>TWO</i> sub questions (from a, b, c) from each unit for a MoQ. No. Questions	aximum o <u>.</u> Marks			POs					
I:PART - A	10	DLS	COU	105					
I a. State periodicity and linearity properties of DFT.	2	L1	CO1	PO1					
b. What is the total number of complex multiplications and complex additions required in case direct computation of DFT?	2	L1	CO1	PO1					
c. What are the advantages of FIR filter?	2	L1	CO1	PO1					
d. List any two advantages of IIR filter.	2	L1	CO1	PO1					
e. The T.F. of a discrete causal system is given as follows: $H(z) = \frac{1 - \frac{3}{4}z^{-1}}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}}$	2	L1	CO4	PO1					
4 8 Draw the direct form-I structure.									

	II:PART - B UNIT - I	90 18			
1 a.	Find the N-point DFT of the sequence $x(n) = u(n) - u(n-N)$	9	L2	CO1	PO1
b.	Find the output $y(n)$ of a filter whose impulse response				
	$h(n) = \{1, 2, 3, 4\}$ and input signal to the filter is	9	L2	CO1	PO2
	$x(n) = \{1, 2, 1, -1, 3, 0, 5, 6, 2, -2, -5, -6, 7, 1, 2, 0, 1\}$ using over-lap add	2			
	method with 6 point circular convolutes.				
c.	State and prove Circular time shift and circular frequency shift properties	9	L2	CO2	PO2
	of DFT.				
	UNIT - II	18			
2 a.	Develop the Radix-2 Decimates in frequency-FFT (DIF-FFT) algorithm	9	L3	CO2	PO2
	for $N = 8$ and draw the signal flow graph.	-			

P18	EC44		Pag	je No	. 2
b.	Find the sequence $x(n)$ using DIF-FFT algorithm, if the DFT of the	0		G 0 1	D O A
	sequence is $x(k) = \{0, 2+j2, -4j, 2-2j, 0, 2+2j, 4j, 2-2j\}$	9	L2	CO1	PO2
c.	What is Goertzel algorithm and obtain the direct form-II realization? If	0		~~~	
	$x(n) = \{1, 0, 1, 0\}$ find $x(2)$ using Goertzel algorithm.	9	L2	CO2	PO2
	UNIT - III	18			
3 a.	Design a LPF FIR filter using rectangular window with $M = 7$ and with a				
	cutoff frequency of 1 rad/sec. Also obtain the magnitude response of the	9	L4	CO4	PO2
	system.				
b.	Explain the following:				
	i) Rectangular window	9	L2	CO4	PO2
	ii) Bortlett window	-			102
	ii) Hamming window				
c.	Explain frequency sampling technique of FIR filter design.	9	L2	CO4	PO2
	UNIT - IV	18			
4 a.	For the given specification find the system function of a Butterworth LPF,				
	$0.8 \le \left H\left(j\Omega \right) \right \le 1; \ 0 \le \Omega \le 0.2\pi$	9	L4	CO4	PO2
	$ H(j\Omega) \le 0.2; \ 0.6\pi \le \Omega \le \pi$				
b.	Explain how an analog filter is mapped onto a digital filter using Impulse	0	1.0	001	DOA
	Invariance Method (IIM). What are the limitations of this method?	9	L3	CO3	PO2
c.	Design a digital low pass Butterworth filter using bilinear transformation				
	with pass band and stop band frequency are 200 Hz and 500 Hz	0	T 5	CO2	DO2
	respectively. Pass band and stop band attenuation are -5 dB and -12 dB	9	L5	CO3	PO2
	respectively. Sampling frequency is 5 KHz.				
	UNIT - V	18			
5 a.	Obtain the DF-I, DF-II, cascade and parallel from realization of the				
	following system:	9	L4	CO4	PO2
	y(n) = 0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)				
b.	For the given impulse response draw direct form, cascade and linear phase.				
	$h(n) = \left(\frac{1}{2}\right)^{n} \left[u(n) - u(n-4)\right]$	9	L4	CO4	PO2
c.	Obtain a parallel form realization for the system				
	$H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{\left(z - \frac{1}{4}\right)\left(z^2 - z + \frac{1}{2}\right)}$ Also find the difference equation for the	9	L4	CO4	PO2

transfer function.