U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; July / August - 2022 Digital Signal Processing
Time: 3 hrs Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Apply mathematical knowledge to understand DFT, FFT and Filters
CO2: Analyze discrete systems using DFT, FFT and filtering formulation
CO3: Design the FIR \& IIR filters for given specification
CO4: Implement the discrete-time systems using various approaches
CO5: Understand role of DSP in various applications
Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	$\begin{gathered} \text { Questions } \\ \text { I:PART - A } \end{gathered}$	Marks 10	BLs	COs	POs
I a.	State periodicity and linearity properties of DFT.	2	L1	CO1	PO1
b.	What is the total number of complex multiplications and complex additions required in case direct computation of DFT?	2	L1	CO1	PO1
c.	What are the advantages of FIR filter?	2	L1	CO1	PO1
d.	List any two advantages of IIR filter.	2	L1	CO1	PO1
	The T.F. of a discrete causal system is given as follows:				
	$H(z)=\frac{1-3 / 4 z^{-1}}{1+\frac{1}{4} z^{-1}-\frac{1}{8} z^{-2}}$	2	L1	CO4	PO1

Draw the direct form-I structure.

II:PART - B

90

UNIT - I
18

1 a. Find the N-point DFT of the sequence $x(n)=u(n)-u(n-N) \quad 9 \quad$ L2 CO1 PO1
b. Find the output $y(n)$ of a filter whose impulse response $h(n)=\{1,2,3,4\}$ and input signal to the filter is $x(n)=\{1,2,1,-1,3,0,5,6,2,-2,-5,-6,7,1,2,0,1\}$ using over-lap add method with 6 point circular convolutes.
c. State and prove Circular time shift and circular frequency shift properties of DFT.

UNIT - II

18
2 a. Develop the Radix-2 Decimates in frequency-FFT (DIF-FFT) algorithm for $\mathrm{N}=8$ and draw the signal flow graph.

P18EC44

b. Find the sequence $x(n)$ using DIF-FFT algorithm, if the DFT of the sequence is $x(k)=\{0,2+j 2,-4 j, 2-2 j, 0,2+2 j, 4 j, 2-2 j\}$
c. What is Goertzel algorithm and obtain the direct form-II realization? If $x(n)=\{1,0,1,0\}$ find $x(2)$ using Goertzel algorithm.

UNIT - III

3 a. Design a LPF FIR filter using rectangular window with $\mathrm{M}=7$ and with a cutoff frequency of $1 \mathrm{rad} / \mathrm{sec}$. Also obtain the magnitude response of the system.
b. Explain the following:
i) Rectangular window
ii) Bortlett window
ii) Hamming window
c. Explain frequency sampling technique of FIR filter design.

UNIT - IV

4 a . For the given specification find the system function of a Butterworth LPF,

$$
\begin{aligned}
0.8 \leq|H(j \Omega)| & \leq 1 ; 0 \leq \Omega \leq 0.2 \pi \\
|H(j \Omega)| & \leq 0.2 ; \quad 0.6 \pi \leq \Omega \leq \pi
\end{aligned}
$$

L4 $\quad \mathrm{CO} 4 \quad \mathrm{PO} 2$

L4 $\quad \mathrm{CO} 4 \quad \mathrm{PO} 2$
b. Explain how an analog filter is mapped onto a digital filter using Impulse Invariance Method (IIM). What are the limitations of this method?
c. Design a digital low pass Butterworth filter using bilinear transformation with pass band and stop band frequency are 200 Hz and 500 Hz respectively. Pass band and stop band attenuation are -5 dB and -12 dB respectively. Sampling frequency is 5 KHz .

UNIT - V

5 a. Obtain the DF-I, DF-II, cascade and parallel from realization of the following system:
$y(n)=0.1 y(n-1)+0.2 y(n-2)+3 x(n)+3.6 x(n-1)+0.6 x(n-2)$
b. For the given impulse response draw direct form, cascade and linear phase.
$h(n)=\left(\frac{1}{2}\right)^{n}[u(n)-u(n-4)]$
L4 CO4
PO2
c. Obtain a parallel form realization for the system
$H(z)=\frac{8 z^{3}-4 z^{2}+11 z-2}{\left(z-\frac{1}{4}\right)\left(z^{2}-z+\frac{1}{2}\right)}$. Also find the difference equation for the

