U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; July / August - 2022 Microcontroller

Time: 3 hrs Max. Marks: 100

Course Outcome

The Students will be able to:

- CO1: Apply the knowledge of 8-bit processor to understand the 16-bit processor
- CO2: Apply the concepts of 8-bit processor to analyze instruction sets and other features in MSP430.
- CO3: Discuss and Analyze the different peripheral components associated with MSP430
- CO4: To develop logical skills to write programs in MSP430 for the given Engineering Problems
- CO5: To analyze the developed code using modern engineering tools.

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.

ii) PART-B: Answer any **TWO** sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions PART - A	Marks	BLs	COs
1 a.	Differentiate between microcontroller based systems with embedded system.	2	L1	CO1
b.	Explain the operation performed by the instruction: MOV.W R4, O×0136	2	L2	CO2
c.	What is Reset? Mention the different types of resets in MSP430.	2	L2	CO2
d.	What is the main function of the watchdog Timer? Mention any one applications of WDT.	2	L1	CO1
e.	Mention the role of comparator in ADC.	2	L1	CO1
	PART - B UNIT - I			
1 a.	Explain the architecture of MSP-430 micro controller with its functional block diagram.	9	L2	CO2
b.	List the features of MSP-430 that makes it suitable for low power and portable applications.	9	L2	CO3
c.	Explain the function of the following pins:			
	i) NMI ii) ACLK and SMCLK iii) SCLK, SDO and SCL iv) XIN and XOUT v) RST	9	L2	CO2
	UNIT - II			
2 a.	Explain the machine code format-1 of MSP-430 and also write the machine code for the instruction ADD.W R5, R6.	9	L3	CO3
b.	What is addressing mode? With an example, explain the addressing modes of MSP430 microcontroller.	9	L2	CO2
c.	Write an assembly language program to count number of ones and zeros in an 8-bit number.	9	L3	CO4

P18EC45				Page No 2				
UNIT – III								
3 a.	Explain interrupt response structure of MSP-430.	9	L2	CO3				
b.	Write an assembly language program to toggle LED's with period of 0.5 sec using interrupts generated by Timer-A in up-mode.	9	L3	CO4				
c.	Explain the various low power operating modes of MSP-430 microcontroller.	9	L2	CO2				
UNIT - IV								
4 a.	Along with the suitable format explain control register used in Timer-A.			CO3				
b.	b. Draw the simplified block diagram of Basic Timer-1 and explain its operation. Also draw the control register format of BTCTL.			CO3				
c.	Describe the Control register RTCCTL along with the format.			CO3				
UNIT - V								
5 a.	With the help of neat block diagram explain the operation of ADC – 10.	9	L2	CO2				
b.	With a neat diagram explain the architecture of comparator_A+ of MSP-430.	9	L2	CO2				
c.	List the principal distinctions between ADC 10 and ADC 12 successive approximation ADC's.	9	L2	CO3				