U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B. E. - Electronics and Electronics Engineering Semester End Examination; July / August - 2022 Signals and Systems
Time: 3 hrs
Max. Marks: 100

Course Outcome's

The Students will be able to:
CO1: Understand the classification of signals, relate between elementary signals and identify the properties of a system.
CO2: Perform convolution operation on continuous and discrete time signals. Apply the properties of impulse response representation.
CO3: Solve difference and differential equations and represent them as block diagrams.
CO4: Apply the properties of DTFS and DTFT to Discrete and continuous time signals.
CO5: Solve difference equations using Z-transforms
Note:
i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B: Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.
Q. No.

Questions

I:PART - A
I a. Check for Priodicity. If it is periodic signal find the period. $x(n)=\cos \left(\frac{n \pi}{12}\right)+\sin \left(\frac{n \pi}{18}\right)$
b. Determine the convolution of $u(t)$ with $u(t)$.
c. Obtain the block diagram representation using dirct form-II H for a system given by the differential equation.
$\frac{d^{2} y}{d t^{2}}+\frac{5 d y}{d t}+4 y(t)=x(t)+\frac{3 d x(t)}{d t}$
d. Solve the following signal to find Fourier transform. $x(t)=\cos \omega_{0} t$
e. Define ROC with the help of ZT equation.
II:PART - B 90
UNIT - I 18

1 a. Build the following signal and determine their even and odd components: $x(t)=r(t+2)-r(t+1)-r(t-2)+r(t-3)$
b. Check for time invariant, causal and stability for the system represented by,
$y(t)=2 t \times(t)$
c. Consider an energy signal $x(t)$ over the range $-3 \leq t \leq 3$ with energy $\mathrm{E}=12$ joules. Find the range of the signal and compute their signal energy for the following $1 . \mathrm{X}(3 \mathrm{t}) \quad 2.2 \mathrm{x}(\mathrm{t}) \quad 3$.
$X(t-4)$
4. $\mathrm{X}(-\mathrm{t})$

UNIT - II

2 a. Given input $x(n)=2^{n} u(-n)$ and impulse response $h(n)=u(n)$ Draw $h(n)$ and $x(n)$; Find the response $Y(n)$ of the system.
b. State the different properties of impulse response and explain any two.
c. Analyze the f LTI system characterized by impulse response $h(n)=4^{-n} u(2-n)$ for Causal, Memory and stability.

UNIT - III

3 a. Determine the response of first order discrete time system governed by the difference equation, $y(n)=-0.5 y(n-1)+x(n)$ The input is Unit step and Initial condition $y(-1)=0$
b. Determine the output of the LTI system characterized by the differential equation $\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=x(t)$ with initial condition $y(0)=3$ and $\frac{d y(t)}{d t t=0}=-5$ for the input $x(t)=2 u(t)$.
c. Determine the Fourier coefficient for the periodic signal $x(t)=e^{-t}$ with period $\mathrm{T}=1 \mathrm{sec}$. Draw its amplitude and phase spectrum.

UNIT - IV

4 a . Define and demonstrate the following properties of Discrete Time Fourier Transform:
i) Time Convolution Property
ii) Time Scaling property
b. Apply the property of Fourier transform to find X[w];
$x(t)=\frac{2 a}{a^{2}+(2 \pi t)^{2}}$

$$
\begin{aligned}
x(t) & =(t+1) ;-1 \leq t \leq 0 \\
& =(-t+1) ; 0 \leq t \leq 1
\end{aligned}
$$

c. The differential equation of the system is given as,
$\frac{d^{2}}{d t^{2}} y(t)+5 \frac{d}{d t} y(t)+6 y(t)=-\frac{d}{d t} x(t)$
Determine the frequency response and impulse response of the system.
UNIT - V

5 a . Expand the properties of ROC of Z-transforms.
b. Determine the Z transform of $x(n)=-u[-n-1]+\left[\frac{1}{4}\right]^{n} u(n)$. Depict the poles and zeroes with ROC on the Z - plane.
c. Find the inverse ZT of $x[z]=\frac{z(z-1)}{(z+1)(z+2)^{3}} ; R O C|Z|>2$.

