P18EE42	
----------------	--

Page No... 1

	<i>U.S.N</i>			
1	P.E.S. College of Engineering, Mandya - 571 401			
54	(An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B. E Electronics and Electronics Engineering			
	Semester End Examination; July / August - 2022			
Time:	3 hrs Max. Marks:	100		
	Course Outcome's			
The Students will be able to: CO1: Understand the classification of signals, relate between elementary signals and identify the properties of a				
<i>CO2:</i> .	system. Perform convolution operation on continuous and discrete time signals. Apply the properties of im	pulse		
CO3: \$	response representation. Solve difference and differential equations and represent them as block diagrams.			
CO4: A	Apply the properties of DTFS and DTFT to Discrete and continuous time signals. Solve difference equations using Z-transforms			
<u>Note</u> : i	<i>PART-A</i> is compulsory. One question from each unit for maximum of 2 marks.			
	<i>i)</i> PART-B : Answer any <u>TWO</u> sub questions (from a, b, c) from each unit for a Maximum of 18 marks.	Marks		
Q. No.	Questions I:PART - A	10		
I a.	Check for Priodicity. If it is periodic signal find the period. $x(n) = \cos\left(\frac{n\pi}{12}\right) + \sin\left(\frac{n\pi}{18}\right)$	2		
b.	Determine the convolution of u(t) with u(t).	2		
с.	Obtain the block diagram representation using dirct form-II H for a system given by the			
	differential equation.	2		
	$\frac{d^2y}{dt^2} + \frac{5dy}{dt} + 4y(t) = x(t) + \frac{3dx(t)}{dt}$			
d.	$dt^2 dt$ dt dt Solve the following signal to find Fourier transform. $x(t) = \cos \omega_0 t$	2		
	Define ROC with the help of ZT equation.	2		
e.	II:PART - B	2 90		
	UNIT - I	18		
1 a.	Build the following signal and determine their even and odd components:			
	x(t) = r(t+2) - r(t+1) - r(t-2) + r(t-3)	9		
b.	Check for time invariant, causal and stability for the system represented by,			
	$y(t) = 2t \times (t)$	9		
c.	Consider an energy signal $x(t)$ over the range $-3 \le t \le 3$ with energy E = 12 joules. Find the			
	range of the signal and compute their signal energy for the following 1. X (3t) 2. 2x (t) 3.	9		
	X(t-4) 4. $X(-t)$			

UNIT - II

- Given input $x(n) = 2^n u(-n)$ and impulse response h(n) = u(n) Draw h(n) and x(n); Find 2 a. 9 the response Y(n) of the system.
 - State the different properties of impulse response and explain any two. b.
 - Analyze the f LTI system characterized by impulse response c. 9 $h(n) = 4^{-n}u(2-n)$ for Causal, Memory and stability.
 - UNIT III 18
- Determine the response of first order discrete time system governed by the difference 3 a. equation, y(n) = -0.5y(n-1) + x(n) The input is Unit step and Initial condition y(-1) = 0
 - Determine the output of the LTI system characterized by the differential b. equation $\frac{d^2 y(t)}{dt^2} + 3 \frac{dy(t)}{dt} + 2y(t) = x(t)$ with initial condition y(0) = 3 and $\frac{dy(t)}{dt t = 0} = -5$ 9 for the input x(t) = 2u(t).
 - Determine the Fourier coefficient for the periodic signal $x(t) = e^{-t}$ with period T = 1 sec. с. 9 Draw its amplitude and phase spectrum.

- i) Time Convolution Property
- ii) Time Scaling property
- b. Apply the property of Fourier transform to find X[w];

$$x(t) = \frac{2a}{a^2 + (2\pi t)^2}$$

$$x(t) = (t+1); -1 \le t \le 0$$

$$= (-t+1); 0 \le t \le 1$$
9

The differential equation of the system is given as, c.

$$\frac{d^2}{dt^2}y(t) + 5\frac{d}{dt}y(t) + 6y(t) = -\frac{d}{dt}x(t)$$
9

Determine the frequency response and impulse response of the system.

Expand the properties of ROC of Z-transforms. 5 a.

Determine the Z transform of $x(n) = -u[-n-1] + \left\lceil \frac{1}{4} \right\rceil^n u(n)$. Depict the poles and zeroes b. 9 with ROC on the Z – plane.

c. Find the inverse ZT of
$$x[z] = \frac{z(z-1)}{(z+1)(z+2)^3}$$
; $ROC|Z| > 2$. 9

* * * *

9

9

9

9