

The Students will be able to:

CO1: Apply the knowledge of 8-bit processor to understand the 16-bit processor

CO2: Apply the concepts of 8-bit processor to analyze instruction sets and other features in MSP430.

CO3: Discuss and Analyze the different peripheral components associated with MSP430

CO4: To develop logical skills to write programs in MSP430 for the given Engineering Problems

CO5: To analyze the developed code using modern engineering tools.

<u>Note</u>: *i*) PART-A is compulsory. One question from each unit for maximum of 2 marks. *ii*) PART-B: Answer any **TWO** sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Questions I : PART - A	Marks 10	BLs	COs
What is Gaussian surface? What are the conditions to be satisfied in	2	12	CO1
special Gaussian surface?	-	1-4	001
What is an equipotential surface?	2	L1	CO2
Give the applications of Stoke's theorem	2	L2	CO3
Define Magneto statics and give an example.	2	L1	CO4
Mention the properties of uniform plane wave.	2	L2	CO5
II : PART - B UNIT - I	90 18		
Develop an expression for EFI due infinite sheet charge.	9	L3	CO1
Analyze and prove the divergence theorem for a shell region enclosed by			
spherical surface at $r = a$ and $r = b$ (b>a) and centered at origin, if	9	L4	CO1
$\overline{D} = 5r \overline{a}_r c/m^2$ and Evaluate divergence theorem precisely.			
A 2 μ C point charge is located at A (4, 3, 5) in free space. Evaluate E_{ρ} , E_{ϕ} , and E_z at P (8, 12, 2).	9	L4	CO1
UNIT - II	18		
Estimate and analyze the work done in carrying a -2 C charge from			
P ₁ (2, 1, -1) to P ₂ (8, 2, -1) in the field $\overline{E} = \overline{a_x y} + \overline{a_y x}$ V/m.	0	τ <i>Λ</i>	CO^{2}
i) Analog the parabola $x=2y^2$	9	L4	002
ii) Along the straight line joining P_1 and P_2			
A uniform surface charge density of 20 n c/m^2 is present on the spherical			
surface r=0.6 cm in free space.			
	I : PART - A What is Gaussian surface? What are the conditions to be satisfied in special Gaussian surface? What is an equipotential surface? Give the applications of Stoke's theorem Define Magneto statics and give an example. Mention the properties of uniform plane wave. II : PART - B UNIT - I Develop an expression for EFI due infinite sheet charge. Analyze and prove the divergence theorem for a shell region enclosed by spherical surface at $r = a$ and $r = b$ (b>a) and centered at origin, if $\overline{D} = 5r\overline{a}_{r} c/m^{2}$ and Evaluate divergence theorem precisely. A 2 µC point charge is located at A (4, 3, 5) in free space. Evaluate E_{ρ} , E_{ϕ} , and E_{z} at P (8, 12, 2). UNIT - II Estimate and analyze the work done in carrying a -2 C charge from P ₁ (2, 1, -1) to P ₂ (8, 2, -1) in the field $\overline{E} = \overline{a}_{x}y + \overline{a}_{y}x$ V/m. i) Analog the parabola $x=2y^{2}$ ii) Along the straight line joining P ₁ and P ₂ A uniform surface charge density of 20 n c/m ² is present on the spherical	I: PART - A10What is Gaussian surface? What are the conditions to be satisfied in special Gaussian surface?2What is an equipotential surface?2Give the applications of Stoke's theorem2Define Magneto statics and give an example.2Mention the properties of uniform plane wave.2 II: PART - B 90UNIT - I18Develop an expression for EFI due infinite sheet charge.9Analyze and prove the divergence theorem for a shell region enclosed by spherical surface at r = a and r = b (b>a) and centered at origin, if $D = 5r a_r c/m^2$ and Evaluate divergence theorem precisely.9A 2 µC point charge is located at A (4, 3, 5) in free space. Evaluate E_p, E_{ϕ} , and E_z at P (8, 12, 2).9III Estimate and analyze the work done in carrying a -2 C charge from $P_1 (2, 1, -1)$ to $P_2 (8, 2, -1)$ in the field $\overline{E} = \overline{a_x y} + \overline{a_y x}$ V/m. i) Analog the parabola x=2y²9ii) Along the straight line joining P1 and P29A uniform surface charge density of 20 n c/m² is present on the spherical9	I: PART - A10What is Gaussian surface? What are the conditions to be satisfied in special Gaussian surface?2L2What is an equipotential surface?2L1Give the applications of Stoke's theorem2L2Define Magneto statics and give an example.2L1Mention the properties of uniform plane wave.2L2Develop an expression for EFI due infinite sheet charge.9L3Analyze and prove the divergence theorem for a shell region enclosed by spherical surface at r = a and r = b (b>a) and centered at origin, if $\overline{D} = 5r \overline{a}_{T} c/m^{2}$ and Evaluate divergence theorem precisely.9L4A 2 µC point charge is located at A (4, 3, 5) in free space. Evaluate E_{p}, E_{ϕ} and E_{z} at P (8, 12, 2).1818Estimate and analyze the work done in carrying a -2 C charge from P ₁ (2, 1, -1) to P ₂ (8, 2, -1) in the field $\overline{E} = \overline{a}_{x} y + \overline{a}_{y} x$ V/m. i) Analog the parabola x=2y ² 9L4ii) Along the straight line joining P ₁ and P ₂ 4uniform surface charge density of 20 n c/m ² is present on the spherical9

9 L4 CO2

Page No... 1

i) Find the absolute potential at P(r=1 cm, θ =25°, φ =50°,):

ii) Evaluate V_{AB}, given points A(r = 2 cm, $\theta=30^{\circ}$, $\phi=60^{\circ}$) and B(r = 3 cm, $\theta=45^{\circ}$, $\phi=90^{\circ}$)

c. State and prove uniqueness theorem. 9 L3 CO2

UNIT - III 18

3 a. Analyze and develop an expression for boundary conditions between conductor and free space. 9 L3 CO3

b. Let,
$$J = \frac{25}{\rho} \overline{a}_{\rho} - \frac{20}{\rho^2 + 0.01} \overline{a}_z \text{ A/m}^2$$

- i) Find the total current crossing the plane Z=0.2 in the a_z direction for $\rho < 0.4$ 9 L4 CO3
- ii) Calculate $\partial \rho_v / \partial t$
- iii) Find the outward current crossing the closed surface defined by $\rho = 0.01$, $\rho = 0.4$, Z = 0, and Z = 0.2.
- c. Two perfectly-conducting cylindrical surfaces are located at $\rho = 3$ and $\rho = 5$ cm. The total current passing radially outward through the medium between the cylinders is 3 A dc. Assume the cylinders are both of length '*l*'.
 - i) Find the voltage and resistance between the cylinders, and 'E' in the 9 L4 CO3 region between the cylinders, if a conducting material having $\sigma = 0.05$ S/m is present for 3< ρ <5 cm.
 - ii) Show that integrating the power dissipated per unit volume cover the volume gives the total dissipated power.

UNIT - IV

- 4 a. Develop and analyze the magnetic field intensity on the axis of a circular loop conductor using Biot-Savart law.
 - b. The magnetic field intensity is given in a certain region of space as:

Let
$$\overline{H} = \frac{x+2y}{z^2}\overline{a}_y + \frac{2}{z}\overline{a}_z \text{ A/m}$$

i) Find ΔxH ii) Find J 9 L4 CO4

- iii) Use J to find the total current passing through the surface z = 4, 1 <x<2, 3<y<5, in the a_z directions. Show that the same result is obtained using the other side of Stoke's theorem.
- c. Develop and explain scalar magnetic potential and vector magnetic potential 9 L3 CO4

18

9

L3 CO4

P18EE45			Page No 3		
	UNIT - V	18			
5 a.	Analyze and develop expressions for general wave equation.	9	L3 CO5		
b.	Develop and analyze the magnetic boundary conditions at the boundary	9	L3 CO5		
	between two permeabities of medium.	9	L3 C03		
с.	State and explain poynting theorem and Let $\mu = 3 \times 10^{-5}$ H/m, and				
	$\varepsilon = 1.2 \times 10^{-10}$ F/m, and $\sigma = 0$ everywhere. If H = 2 cos(10 ¹⁰ t- β x) a _z A/m,	9	L4 CO5		
	use Maxwell's equations to obtain expressions for 'B', 'D', 'E' and ' β '.				

* * * *