\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; July / August - 2022
Electro Magnetic Field Theory
Time: 3 hrs
Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Apply the knowledge of 8-bit processor to understand the 16-bit processor
CO2: Apply the concepts of 8-bit processor to analyze instruction sets and other features in MSP430.
CO3: Discuss and Analyze the different peripheral components associated with MSP430
CO4: To develop logical skills to write programs in MSP430 for the given Engineering Problems
CO5: To analyze the developed code using modern engineering tools.
Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B: Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.
Q. No.

Questions

Marks BLs COs

I : PART - A
10

I a. What is Gaussian surface? What are the conditions to be satisfied in special Gaussian surface?
b. What is an equipotential surface?

L1 CO2
c. Give the applications of Stoke's theorem

2
L2 CO3
d. Define Magneto statics and give an example.

2 L1 CO4
e. Mention the properties of uniform plane wave.

2 L2 CO5

II : PART - B 90

UNIT - I 18
1 a. Develop an expression for EFI due infinite sheet charge.
9
L2 CO1
b. Analyze and prove the divergence theorem for a shell region enclosed by spherical surface at $\mathrm{r}=\mathrm{a}$ and $\mathrm{r}=\mathrm{b}(\mathrm{b}>\mathrm{a})$ and centered at origin, if $9 \quad \mathrm{~L} 4 \quad \mathrm{CO} 1$ $\bar{D}=5 \mathrm{r} \bar{a}_{\mathrm{r}} \mathrm{c} / \mathrm{m}^{2}$ and Evaluate divergence theorem precisely.
c. A $2 \mu \mathrm{C}$ point charge is located at $\mathrm{A}(4,3,5)$ in free space. Evaluate $\mathrm{E}_{\rho}, \mathrm{E}_{\varphi}$, and E_{z} at $\mathrm{P}(8,12,2)$.

UNIT - II

18
2 a. Estimate and analyze the work done in carrying a -2 C charge from $\mathrm{P}_{1}(2,1,-1)$ to $\mathrm{P}_{2}(8,2,-1)$ in the field $\bar{E}=\bar{a}_{x} y+\bar{a}_{y} x \quad \mathrm{~V} / \mathrm{m}$.
$9 \quad \mathrm{~L} 4 \quad \mathrm{CO} 2$
i) Analog the parabola $x=2 y^{2}$
ii) Along the straight line joining P_{1} and P_{2}
b. A uniform surface charge density of $20 \mathrm{nc} / \mathrm{m}^{2}$ is present on the spherical surface $\mathrm{r}=0.6 \mathrm{~cm}$ in free space.
i) Find the absolute potential at $\mathrm{P}\left(\mathrm{r}=1 \mathrm{~cm}, \theta=25^{\circ}, \varphi=50^{\circ}\right.$,):
ii) Evaluate V_{AB}, given points $\mathrm{A}\left(\mathrm{r}=2 \mathrm{~cm}, \quad \theta=30^{\circ}, \phi=60^{\circ}\right)$ and $\mathrm{B}\left(\mathrm{r}=3 \mathrm{~cm}, \theta=45^{\circ}, \phi=90^{\circ}\right)$
c. State and prove uniqueness theorem.

UNIT - III
3 a. Analyze and develop an expression for boundary conditions between conductor and free space.
b. Let, $J=\frac{25}{\rho} \bar{a}_{\rho}-\frac{20}{\rho^{2}+0.01} \bar{a}_{\mathrm{z}} \mathrm{A} / \mathrm{m}^{2}$
i) Find the total current crossing the plane $\mathrm{Z}=0.2$ in the a_{z} direction for $\rho<0.4$
ii) Calculate $\partial \rho_{v} / \partial t$
iii) Find the outward current crossing the closed surface defined by $\rho=0.01, \rho=0.4, Z=0$, and $Z=0.2$.
c. Two perfectly-conducting cylindrical surfaces are located at $\rho=3$ and $\rho=5 \mathrm{~cm}$. The total current passing radially outward through the medium between the cylinders is 3 A dc. Assume the cylinders are both of length ' l '.
i) Find the voltage and resistance between the cylinders, and ' E ' in the region between the cylinders, if a conducting material having $\sigma=0.05 \mathrm{~S} / \mathrm{m}$ is present for $3<\rho<5 \mathrm{~cm}$.
ii) Show that integrating the power dissipated per unit volume cover the volume gives the total dissipated power.

UNIT - IV

4 a. Develop and analyze the magnetic field intensity on the axis of a circular loop conductor using Biot-Savart law.
b. The magnetic field intensity is given in a certain region of space as:

Let $\bar{H}=\frac{x+2 y}{z^{2}} \bar{a}_{y}+\frac{2}{z} \bar{a}_{z} \mathrm{~A} / \mathrm{m}$
i) Find $\Delta x H$
ii) Find J
iii) Use J to find the total current passing through the surface $\mathrm{z}=4$, $1<x<2,3<y<5$, in the a_{z} directions. Show that the same result is obtained using the other side of Stoke's theorem.
c. Develop and explain scalar magnetic potential and vector magnetic potential

UNIT - V

5 a . Analyze and develop expressions for general wave equation.
b. Develop and analyze the magnetic boundary conditions at the boundary between two permeabities of medium.
c. State and explain poynting theorem and Let $\mu=3 \times 10^{-5} \mathrm{H} / \mathrm{m}$, and $\varepsilon=1.2 \times 10^{-10} \mathrm{~F} / \mathrm{m}$, and $\sigma=0 \quad$ everywhere. If $\mathrm{H}=2 \cos \left(10^{10} \mathrm{t}-\beta \mathrm{x}\right) \mathrm{a}_{\mathrm{z}} \mathrm{A} / \mathrm{m}, \quad 9 \quad \mathrm{~L} 4 \quad \mathrm{CO} 5$ use Maxwell's equations to obtain expressions for ' B ', ' D ', ' E ' and ' β '.

