U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Electrical and Electronic Engineering Semester End Examination; July / August - 2022 Op-amp and Linear ICs

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

CO1: Apply the knowledge of AC amplifier to describe the characteristics and operation of op-amps has AC amplifier.

CO2: Analyze the frequency response and stability of op-amps.

CO3: Design the op-amp has signal processing & waveform generator circuits for a given specifications.

CO4: Design the op-amp has nonlinear circuits & filters for a given specifications.

CO5: Analyze the operation of specialized IC's and different types voltage regulators.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I: PART - A	Marks 10	BLs	COs
I a.	Sketch the circuit systems for an Op-amp and identify all terminals.	2	L3	CO1
b.	Define Slew Rate.	2	L1	CO2
c.	Discuss amplitude stabilization.	2	L2	CO3
d.	Mention the classification of filter.	2	L1	CO4
e.	Define Load Regulation.	2	L2	CO5
	II : PART - B	90		
	UNIT - I	18		
1 a.	Sketch and explain the operation f high Z _{in} capacitor coupled Non-inverting	9	L2	CO1
	amplifier, with necessary equation.			
b.	Design a capacitor- coupled voltage follower using 741 op-amps. The lower			
	cutoff frequency for the circuit is to be 50Hz and the load resistance is $R_{L} = $	9	L5	CO3
	$5.5k\Omega$			
c.	Briefly discusses upper frequency of an op-amp circuit and show how the cutoff	0	1.0	CO1
	frequency can be set for non-inverting amplifier.	9	L2	CO1
	UNIT - II	18		
2 a.	Sketch a lag lead compensation circuit. Explain its operation and show how it	9	L2	CO2
	affects the frequency and phase response graphs of an op-amp?	9	L2	CO2
b.	With a neat circuit diagram, analyze the concept of Z_{in} mod compensation.	9	L4	CO2
c.	Discuss op-amp circuit stability and show how Feedback in an inverting			
	amplifier can produce instability and explain the conditions need to be satisfied	9	L2	CO2
	for the same.			

P18EE46			Page No 2		
	UNIT - III	18			
3 a.	Sketch op-amp precision rectifier peak detector circuits draw the input and output waveform, and explain the circuit operation.	9	L2	CO2	
b.	Explain what a dead zone circuit does. Sketch an op-amp dead zone circuit. Show the waveform throughout and explain its operation.	9	L5	CO2	
c.	With relevant circuit diagram and waveform. Explain the operation of precision full wave rectifier circuit.	9	L2	CO3	
	UNIT - IV	18			
4 a.	Sketch the circuit diagram of an op-amp Astable multivibrator. Draw the circuit waveform and explain the operation.	9	L5	CO3	
b.	Design a triangular waveform generator to produce a \pm 2 V, 1 kHz output. Use a \pm 15 V supply and specify the minimum op-amp SR(slew note).	9	L6	CO4	
c.	Sketch the circuit of a first order active high pass filter and explain how the circuit operates?	9	L5	CO4	
	UNIT - V	18			
5 a.	Draw the basic block diagram and waveform for a PLL system. Identify each component part and explain the function.	9	L3	CO4	
b.	i) With a neat diagram, explain the operation of an adjustable output Regulator.ii) With a neat diagram, explain the operation of precision voltage Regulator.	9	L5	CO5	
c.	Explain the theory of operation of the universal active filter.	9	L5	CO5	