U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 Fourth Semester, B.E. - Automobile Engineering
 Semester End Examination; July / August - 2022
 Theory of Machines

Time: 3 hrs
Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Ability to identify various mechanisms, create inversions of planar four bar chain and calculate degrees of freedom of mechanisms.
CO2: Ability to analyze velocity of simple planar mechanisms using graphical methods.
CO3: Ability to design cam profiles for different follower motions and determine kinematic characteristics of the follower and explain working principle of Governors
CO4: Analyze graphically the static forces acting in different links of simple planar mechanisms.
CO5: Determine the magnitude and location of balancing masses for the rotating machines and Reciprocating machines.

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions I : PART - A	Marks 10
I a.	Define Machine.	2
b.	What is relative Velocity?	2
c.	What is the condition of Equilibrium when a member subjected with two forces.	2
d.	Why balancing is necessary.	2
	What is the function of Governor?	2
	II : PART - B	90
	UNIT - I	18

1 a. Define,
i) Kinematic Link
ii) Kinematic Pair
iii) Kinematic chain iv) Mechanism and Inversion.
b. With neat Sketch explain
i) Beam Engine
ii) Coupling rod of locomotive
c. With neat sketch Explain Crank and slotted lever Quick return motion mechanism.

UNIT - II

2 a . In a slider crank mechanism in Fig. 2a the crank $\mathrm{OA}=300 \mathrm{~mm}$ and connecting rod $\mathrm{AB}=$ 1200 rpm . The crank OA is turned 30° from the Inner dead center. Locate all the instantaneous centres. If the crank rotates at $15 \mathrm{rad} / \mathrm{sec}$ clock wise find;
i) Velocity of slider B
ii) Angular velocity rod AB

Fig. 2a
b. In a four bar chain $\mathrm{ABCD} A D$ is fixed and is 150 mm long. The crank AB is 40 mm long and rotates at 120 rpm . Clockwise, while the link $\mathrm{CD}=80 \mathrm{~mm}$ oscillates about $\mathrm{D} . \mathrm{BC}$ and AD are of equal length. Find the angular velocity of link CD when angle $B A D=60^{\circ}$. Do it in relative velocity method
c. Explain different types of instantaneous

UNIT - III
3 a . Draw the profile of a Cam operating a roller reciprocating follower with the following data: Minimum radius of Cam $=25 \mathrm{~mm}$; Lift $=30 \mathrm{~mm}$; Roller diameter $=15 \mathrm{~mm}$; The Cam lift the follower for 120° with SHM followed by a dwell period of 30°. Then the follower lowers down during 150° of the Cam rotating with uniform acceleration and deceleration followed by a dwell period. If the Cam rotates at a uniform speed of 150 rpm .
b. In an engine governor of the Porter type, the upper and lower arms are 200 mm and 250 mm respectively and pivoted on the axis of rotation. The mass of the central load is 15 kg , the mass of each ball is 2 kg and friction of the sleeve together with the resistance of the operating gear is equal to a load 25 N at the sleeve. If the limiting inclinations of the upper arms to the vertical are 30° and 40°. Find, taking friction into account, range of speed of the governor.
c. Explain different types of followers.

UNIT - IV
4 a . A Slider crank mechanism is shown in Fig. 4a the applied to the piston is 1000 N when the crank is at 60° from IDC. Calculate the driving torque $T_{2} \mathrm{AB}=100 \mathrm{~mm}, \mathrm{BC}=300 \mathrm{~mm}$.

b. In the Fig. 4 b , a four bar mechanism is shown. Calculate the required of T_{2} and various forces on links for the equilibrium of the system. $\mathrm{F}=2000 \mathrm{~N}, \mathrm{AD}=215 \mathrm{~mm}, \mathrm{AB}=200 \mathrm{~mm}$, $\mathrm{BC}=370 \mathrm{~mm}, \mathrm{DC}=350 \mathrm{~mm}, \mathrm{CE}=100 \mathrm{~mm}$.

5 a . A shaft carries four masses $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$, and M_{4} attached to it. They all revolve in the same plane. The magnitude of the masses is $6,5,9$ and 7.5 kg respectively. The C, G of the masses is located at a radial distance $100,125,150$ and 75 mm from the axis of the shaft. The angular positions of the masses are $60^{\circ}, 135^{\circ}$ and 270° from M_{1}. Determine the position and magnitude of mass M_{5} at 250 mm radius to balance the system.
b. A six cylinder two stroke single acting diesel engine with cylinder centre lines are spaced at 650 mm . In the end view the crank are 60° apart and in order 1-4-5-2-3-6. The stroke of each piston is 400 mm and crank to C.R ration is $1: 5$. The mass of reciprocating part is 250 kg per cylinder and that of rotating part is 100 Kg per crank. The engine rotates at 240 rpm . Investigate the engine for out of balance primary and secondary force and coupling.
c. What is static and Dynamic balancing?

