U.S.N

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B. E. - Computer Science and Engineering
 Semester End Examination; July / August - 2022
 Theory of Computation

Time: 3 hrs

Course Outcome's

The Students will be able to:
CO1: Design finite automata
CO2: Apply regular expression for lexical analysis phases
CO3: Design grammars for various languages
CO4: Design push-down automata from grammars and grammar to PDA
CO5: Design Turing machines for simple languages and design problem reductions to determine the undecidability of languages

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B: Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.
Q. No.

Questions

Marks
I : PART - A
I a. What is the meaning of the following language

$$
L=\left\{\hat{\delta}\left(q_{0}, w\right)=q_{f}\right\}
$$

b. Name any two applications of regular expression.
c. Recognize whether following grammar is ambiguous or not? Give reason.
$S \rightarrow a S|a S b S| \varepsilon$
d. What are the rules for PDA to be deterministic?
e. When TM simulates compute, first and second tape represents what ?

II : PART - B

UNIT - I
1 a. Construct DFA's for the following language:
For $\Sigma=\{a, b\}$
i) $L=\{w:|w| \bmod 3 \neq|w| \bmod 2\}$
ii) all strings having at least two a ' s exactly one b
b. Determine DFA for the ϵ-NFA given in Fig.1(b),

c. Minimize the state of DFA given in Fig. 1(c) using table filling method.

2 a. Develop regular expression for the following:
i) $L=\left\{w:|w| \bmod 3=0\right.$ where $\left.w \varepsilon(a, b)^{*}\right\}$
ii) Words with 2 or more letters but beginning and ending with same letter for
iii) $L=\left\{a^{n} b^{m} ; m+n\right.$ is even $\}$
b. Convert given FA in Fig.2(b) to regular expression using kleen's theorem,

$\mathrm{L}=\left\{1^{n} \mid \mathrm{n}\right.$ is perfect square $\}$

UNIT - III

3 a. Construct LMD,RMD and parse tree for the grammar (string given is $=$ aaabbabb)

$$
\begin{equation*}
S \rightarrow a S b \mid S_{1} \tag{9}
\end{equation*}
$$

$S_{1} \rightarrow a S_{1} a\left|b S_{1} b\right| \varepsilon$
b. Procedure CFG for the following language and derive appropriate string:
$L=\left\{a^{i} b^{j} c^{k} ; i=j\right.$ or $j=k$ when $\left.i, j, k \geq 0\right\}$
c. Convert following grammar into CNF:
$S \rightarrow A B C|B a B|$
$A \rightarrow a A|B a C| a a a$
$B \rightarrow b B b|a| \varepsilon$
$C \rightarrow C A \mid A C$

4 a. Construct PDA for the following language $L=\left\{a^{m} b^{n}: m \neq n ; m, n>0\right\}$
b. Produce PDA for the given language.
$L=\left\{w \mid n u m_{w}(a)>\right.$ num $\left._{w}(b)\right\} \Sigma=\{a, b\}$.write the IDs for the string "aababa"
c. Produce a PDA for the following CFG
$P \rightarrow \varepsilon$
$P \rightarrow 0$
$P \rightarrow 1$
$P \rightarrow 0 P 0$
$P \rightarrow 1 P 1$
Derive the string 1001 and write the ID's for same
UNIT - V
5 a. Produce a turning machine for the language " $w w^{R "}$ " $w \in\{0,1\}^{+}$. Write ID's for an appropriate string
b. Produce a turning machine to check balanced parentheses, $\sum=\{()$,$\} . Write ID's for an$ appropriate strings.
c. Demonstrate if this instance of PCP has a solution. Write short note on multi-tape TM

List A List B

1	abab	ababaaa
2	aaabbb	bb
3	aab	baab
4	ba	baa
5	ab	ba
6	aa	a

