P1	8CS42

P18CS42	Page No 1				
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B. E Computer Science and Engineering Semester End Examination; July / August - 2022 Theory of Computation					
Time: 3 hrs Max. Marks: 100					
Course Outcome's The Students will be able to: CO1: Design finite automata CO2: Apply regular expression for lexical analysis phases					
CO3: Design grammars for various languages CO4: Design push-down automata from grammars and grammar to PDA CO5: Design Turing machines for simple languages and design problem reduction undecidability of languages	ts to determine the				
Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks. ii) PART-B : Answer any <u>TWO</u> sub questions (from a, b, c) from each unit for a Maximu	m of 18 marks.				
Q. No. Questions	Marks				
I : PART - A	10				
I a. What is the meaning of the following language $L = \{\hat{\delta}(q_0, w) = q_f\}$	2				
b. Name any two applications of regular expression.	2				
c. Recognize whether following grammar is ambiguous or not? Give reason. $S \rightarrow aS \mid aSbS \mid \varepsilon$	2				
d. What are the rules for PDA to be deterministic?	2				
e. When TM simulates compute, first and second tape represents what ?	2				
II : PART - B	90				
UNIT - I	18				
1 a. Construct DFA's for the following language:					
For $\Sigma = \{a, b\}$ <i>i</i>) $L = \{w : w mod 3 \neq w mod 2\}$ <i>ii</i>) all strings having at least two a's exactly one b	9				
b. Determine DFA for the ϵ -NFA given in Fig.1(b),					

c. Minimize the state of DFA given in Fig. 1(c) using table filling method.

- 2 a. Develop regular expression for the following:
 - *i*) L = {w: |w| mod 3 = 0 where w ε(a,b)*} *ii*) Words with 2 or more letters but beginning and ending with same letter for 9 Σ = {a,b}

iii)
$$L = \{a^n b^m; m + n \text{ is even}\}$$

b. Convert given FA in Fig.2(b) to regular expression using kleen's theorem,

$$-\frac{q_{0}}{a} = \frac{q_{1}}{b} = \frac{q_{1}}{a}$$

c.	c. Inter the following language as not regular using appropriate theorem:				
	L={1 ⁿ n is perfect square }	9			
	UNIT - III 18				
3 a.	Construct LMD,RMD and parse tree for the grammar (string given is = aaabbabb)				
	$S \to aSb \mid S_1$ $S_1 \to aS_1a \mid bS_1b \mid \varepsilon$	9			
b.	Procedure CFG for the following language and derive appropriate string:				
	$L = \{a^i b^j c^k; i = j \text{ or } j = k \text{ when } i, j, k \ge 0\}$	9			
c.	Convert following grammar into CNF:				
	$S \rightarrow ABC \mid BaB \mid$				
	$A \rightarrow aA \mid BaC \mid aaa$	9			
	$B \rightarrow bBb \mid a \mid \varepsilon$				
	$C \to CA \mid AC$				
	UNIT - IV	18			
4 a.	Construct PDA for the following language $L = \{a^m b^n : m \neq n; m, n > 0\}$	9			

Contd....3

P18CS42

9

9

b. Produce PDA for the given language.

 $L = \{w \mid num_w(a) > num_w(b)\} \Sigma = \{a, b\}$.write the IDs for the string "aababa"

c. Produce a PDA for the following CFG

$$P \rightarrow \varepsilon$$

$$P \rightarrow 0$$

$$P \rightarrow 1$$

$$P \rightarrow 0P0$$

$$P \rightarrow 1P1$$

Derive the string 1001 and write the ID's for same

- 5 a. Produce a turning machine for the language "ww^R", w∈{0,1}⁺. Write ID's for an appropriate string
 - b. Produce a turning machine to check balanced parentheses, ∑={(,)}. Write ID's for an appropriate strings.
 - c. Demonstrate if this instance of PCP has a solution. Write short note on multi-tape TM

	List A	List B
1	abab	ababaaa
2	aaabbb	bb
3	aab	baab
4	ba	baa
5	ab	ba
6	aa	a

* * * *