\square
P.E.S. College of Engineering, Mandya - 571401
(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Computer Science and Engineering
Semester End Examination; July / August - 2022
Analysis and Design of Algorithms
Time: 3 hrs
Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Analyse the computational complexity of different algorithms.
CO2: Develop the solution for given problems using divide and conquer and decrease and conquer methods.
CO3: Develop an algorithm using Greedy method and transform and conquer methods.
CO4: Develop the solution for given problems using Dynamic programming approach.
CO5: Develop the solution for given problems using Backtracking and Branch-and-Bound technique.
Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions	Marks BLs COs	
	I : PART - A	$\mathbf{1 0}$	

I a. Let A be the adjacency matrix of an undirected graph. Explain what property of the matrix indicates that
i) Graph is complete
ii) The graph has a loop i.e. an edge connecting a vertex itself
b. List the advantages and disadvantages of divide and conquer techniques. 2

L 2 CO 2
c. Define a heap. 2

L1 CO3
d. Mention the methods used to find the minimum spanning tree.

L2 CO 4
e. List any 2 problems that can be solved using backtracking method.

2
L2 CO5
II : PART - B 90
UNIT - I 18

1 a. Explain the three different asymptotic notations with an example for each. $9 \quad$ L2 CO 1
b. Discuss the steps to analyze the efficiency of recursive algorithm and apply the same to compute the factorial of a given numbers.
c. Write DFS algorithm and apply it to the graph in Fig. (i), to construct the corresponding DFS tree assuming ' a ' as the starting vertex.

$9 \quad \mathrm{~L} 2,4 \quad \mathrm{CO} 1$

Contd... 2

UNIT - II

2 a. Write Quick sort algorithm and analyze its efficiency in Best case using Masters theorem.
b. Apply source removal method to find the topological ordering of the graph shown in Fig. (2).

$\operatorname{tg} 42$
c. Apply Strassen's Matrix multiplication to multiply the following matrices. Discuss how this method is better than the direct matrix multiplication method.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right] \times B\left[\begin{array}{ll}
8 & 7 \\
1 & 2
\end{array}\right]
$$

UNIT - III
3 a. Explain why rotations are necessary in AVL trees. Explain the various types of rotations in AVL trees.
b. Write Horspool algorithm for pattern matching. Analyze its time efficiency.
c. Apply memory function method to the instance of Knapsack problem given below.

Item	Weight	Value
1	2	3
2	3	4
3	4	5
4	5	6

Knapsack capacity $m=5$.
UNIT - IV
4 a. Write Floyd's algorithm for solving All pair shortest path problem and analyze its efficiency.
b. Construct a Huffman code for the following data:

Character	A	B	C	D	-
Probability	0.4	0.1	0.2	0.15	0.15

i) Encode the text ABACABAD using generated code
ii) Decode the text whose encoding is 100010111001010
c. List the various methods of establishing the lower bound and explain any one method.

UNIT - V
5 a. Discuss NP-complete and NP-Hard problems with examples.
b. What is Backtracking? Apply backtracking algorithm to solve the instance of the sum-of-subset problem $S=\{1,3,4,5\}$ and $d=11$.
c. Explain the Branch and Bound method. Apply the Branch and Bound algorithm to solve the Travelling sales Person for the graph in Fig (3).

* * * *

9 L6 CO5

9 L3 CO5

9 L3,4 CO5

