U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Computer Science and Engineering
Semester End Examination; July / Aug. - 2022
Database Management Systems

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Design an ER model for a given example from real world description.
- CO2: Design relational models for a given application using schema definition and constraints.
- CO3: Develop complex queries using SQL to retrieve the required information from database.
- CO4: Apply suitable normal forms to normalize the given database.
- CO5: Determine the roles of concurrency control in database design.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
I a.	Define data Independence. Define DBMS.	2	L3	CO1	1,2,3,5 9
b.	Define primary and foreign keys.	2	L3	CO2	1,2,3,5 9
c.	Demonstrate aliasing using a relational algebra operation.	2	L3	CO3	1,2,3,5 9
d.	Demonstrate database constraints using SQL query.	2	L3L2	CO4	1,2,3,5 9
e.	List advantages of Normalization.	2	L3	CO5	1,2,3,5 9
	II: PART - B	90			
	UNIT - I	18			
1 a.	Discuss three schema architecture with a neat diagram. Also	9	L3	CO1	3,1,2,9
	explain different types of data independence.				
b.	Elaborate the advantages of using the DBMS.	9	L2L4	CO1	3,1,2,9
c.	Discuss different database languages and interfaces.	9	L3	CO1	3,1,2,9
	UNIT - II	18			
2 a.	List and explain the different type's attributes with examples for	9	L2	CO2	1,3,9
	each. Also explain concept of weak entity.	9	L4	CO2	1,3,9
b.	Designs an ER Diagram for keeping track of information about				
	Bank Database, Taking into account 4 entities specify all the	9	L3	CO2	1,3,9
	constraints assumed.				
c.	Elaborate all the structural constraints in designing entity	9	L3	CO2	1,3,9
	relationship diagram.				

	UNIT - III	18		J	
3 a.	Consider the following schema and Design the following				
	queries using the Relational algebra.				
	PARTS (Pno, pname, price, Olevel)				
	CUSTOMERS (Cno, Cname, street, zip, phone)				
	EMPLOYEES (Eno, ename, zip, Bdate)				
	ZIP_CODES (Zip, city)				
	ORDERS(Ono, Cno, Eno, Received, Shipped)				
	ODETAILS(Ono, Pno, qty)	9	L3	CO3	3,2,1,9
	i) Retrieve the names and cities of employees who have taken	9			
	orders for parts costing more than 50000				
	ii) Retrieve the pairs of customer number values of customer				
	who live in the same Zip code				
	iii) Retrieve the names of customers who have not placed an order				
	iv) Retrieve the names of customers who have placed exactly				
	two orders				
b.	Discuss the process of relational database using	0	T 0	G02	2210
	ER-to-Relational Mapping.	9	L3	CO3	3,2,1,9
c.	Discuss constraint violations during all three operations in	0	т 2	CO2	2210
	relational model.	9	L3	CO3	3,2,1,9
	UNIT - IV	18			
4 a.	Develop the following queries in SQL for the given relational				
	schema				
	SAILORS (Sid, sname, rating, age)				
	BOATS (Bid, bname, color)				
	RESERVE (Sid, Bid, day)				
	i) Retrieve the sailors names who have reserved red and green	9	L3	CO4	1,2,9
	boats		L 3	001	1,2,7
	ii) Retrieve the sailors names with age over 20 years and				
	reserved black boat				
	iii) Retrieve the number of boats which are not reserved.				
	iv) Retrieve the sailors names who have reserved green boat on				
	Monday				

Contd... 3

Page No... 2

P18CSO652

P18CSO652 Page No... 3 b. Discuss the SIX clauses of SQL retrieval query along with the properties of each clause. Which of the six clauses are required 9 L3 CO4 1,2,9 and which are optional? c. Discuss the Update, Delete and insert statement is SQL 9 L3 CO4 1,2,9 with example. UNIT - V 18 5 a. Examine the relation R (A, B, C, D, E, F) and $FD = \{A \rightarrow B, C \rightarrow DF, AC \rightarrow E, D \rightarrow F\}$ what is the key and 9 CO₅ L3 1,2,9 highest normal form of R? b. Elaborate informal design guidelines for relational schemas. 9 CO₅ 1,2,9 L3 c. Consider the following relation; Car_sale(car#, datesold, salesperson#, commission%, discount_amt) 9 CO₅ L3 1,2,9 $FD = \{datesold \rightarrow discount_amt, salesperson\# \rightarrow commission\%\}$ Based on given key is this relation in 1NF, 2NF or 3NF? Why

* * * *

or why not?