U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B. E. - Civil Engineering

Semester End Examination; July / August - 2022 Hydrology and Irrigation Engineering

Time: 3 hrs Max. Marks: 100

Course Outcome's

The Students will be able to:

- CO1: Apply the knowledge of science and mathematics to understand climatological parameters, runoff, stream flow and ground water flow.
- CO2 Classify and to analyze problems related to crop water requirement, stream flow, hydrograph and ground water hydrology under different conditions.
- CO3: To interpret data related to climatological parameter, stream flow reservoirs, ground water flow.
- CO4: Apply the knowledge of hydrology and irrigation in future to design hydraulic structures either as an individual or as a team to satisfy the changing professional, environment and societal needs

<u>Note</u>: i) **PART-A** is compulsory. One question from each unit for maximum of 2 marks ii) **PART-B**: Answer any <u>TWO</u> sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

	u) PART-B : Answer any <u>TWO</u> sub questions (from a, b, c) from each unit for a Maximum of	18 marks	S.	
Q. No.	Questions	Marks	BLs	COs
	I: PART - A	10		
I a.	Define precipitation and list the types of precipitation.	2	L1	CO1
b.	Define runoff and Infiltration.	2	L1	CO1
c.	Define duty and delta of a crop.	2	L1	CO1
d.	Define surcharge storage and valley storage in reservoir.	2	L1	CO1
e.	Define aquifuge and aquiclude.	2	L1	CO1
	II : PART - B	90		
	UNIT - I	18		
1 a.	With a neat sketch, describe qualitative representation of hydrological cycle.	9	L1	CO2
b.	Explain float type of rain gauge with a neat sketch?	9	L2	CO2
c.	A semicircle of diameter 20 km with an equilateral triangle of side 20 km below its			
	diameter is a close approximation to river basin. The portion coordinates of 5 rain			
	gauge stations A, B, C, D and E located with the basin with respect to a coordinate			
	axis system whose x-axis and origin are coincident with diameter and centre of the	9	L3	CO3
	circle are (5, 5), (-5, 5), (-5, -5), (5, -5), and (0, 0), km respectively. If the rainfall			
	record at these rain gauge are 85, 92, 77, 80 and 105 mm respectively. Determine			
	the average depth of rainfall using thiessen polygon method.			
	UNIT - II	18		
2 a.	Define Evaporation. With a neat sketch, explain the measurement of evaporation	9	I 1 2	CO1,2
	using ISI standard pan.	J	L1,2	CO1,2
b.	A 6 hr storm produced rainfall intensities of 7, 18, 25, 12, 10, and 3 mm/hr. in			
	successive one hour intervals over a basin of 800 km ² . The resulting runoff is	9	L3	CO3
	observed to be 2640 hectare-meters. Determine φ-index for the basin.			

P18C	V42											Page .	No 2	2
c.	Explain the	working of a d	oubl	e rin	g in	filtron	neter	with	adjı	ıstab	le depth of	0	1.0	CO2
	flooding wit	th the help of neat	sketc	h.								9	L2	CO2
	UNIT - III								18					
3 a.	After how r	nany days will yo	u su	pply	wate	er to s	oil in	orde	r to	ensu	re sufficient			
	irrigation of	the given crop, if												
	i) Field cap	acity of the soil $= 2$	28%		ii) l	Perma	nent w	iltin	g poi	nt =	13%	9	L3	CO3
	iii) Dry den	sity of soil = $1.3 g$	m/cc	;	iv)	Effici	ency d	epth	of ro	ot zo	one = 70 cm	9	L3	COS
	v) Daily con	nsumptive use of w	vater	for t	he gi	ven cr	cop = 1	2 m	m					
	Assume RA	MC as 80% of ava	ilabl	e mo	istur	e								
b.	Design a reg	gime for channel for	or a c	disch	arge	of 50	m ³ /s a	nd s	ilt fa	ctor a	as 1.1, using	9	L5	CO3
	lacey's theo	ry.											L3	CO3
c.	Explain the	surface and subsur	face	irriga	ation	•						9	L2	CO2
				UN	[T -]	IV						18		
4 a.	Briefly expl	ain any three force	acti	ng or	grav	vity da	ım					9	L2	CO3
b.	Define reser	rvoir and list the	types	s of 1	reser	voir a	nd the	fac	tors	to be	considered	9	1.1.2	CO2
	while selecti	ing site for a reserv	oir.										21,2	CO2
c.	Explain the	procedure for two	dime	ensio	nal st	tability	y analy	ses l	oy an	alyti	cal method.	9	L2	CO3
				UN	IT -	V						18		
5 a.	Explain the	measurement of di	scha	rge b	y slo	pe are	a metl	nod.				9	L2	CO2
b.	Explain the	causes of failure of	f eart	then o	dam.							9	L2	CO2
c.	The ordinate	es of a storm hydro	ograp	oh du	e to	6 houi	rs isola	ated	storn	ı is g	given, obtain			
	the ordinate	s of, 6hr unit hydr	ograj	ph fo	r the	catch	ment,	if its	area	is 4	23 km ² . Let			
	us consider	the base flow a	s 10)m ³ /s	by	the o	bserva	tion	of f	food	hydrograph			
	ordinates.											9	L3	CO3
		Time(hr)	0	6	12	18	24	30	36	42				
		Discharge(m ³ /s)	10	32	88	116	102	85	71	59				

Time(hr)	0	6	12	18	24	30	36	42
Discharge(m ³ /s)	10	32	88	116	102	85	71	59
Time(hr)	48	54	60	66	72	78	84	90
Discharge(m ³ /s)								