\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E. - Civil Engineering
 Semester End Examination; July / August - 2022 Advanced Surveying

Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Apply the knowledge of basic surveying to determine distance \& elevation by trigonometric levelling
CO2: Analyze different curves for roads and railways
CO3: Interpret surveying data to design curves
CO4: Understand the principles and techniques of modern surveying equipments and their applications
Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

| Q. No. | Questions
 I: PART - A | Marks | BLs COs POs | |
| ---: | :--- | :---: | :--- | :--- | :--- | :--- |
| I a. | Explain the term "Base is inaccessible" in trigonometric levelling. | 2 | L1 | CO1 PO1 |
| b. | What is a Curve? Where and why do we provide curves? | 2 | L1 | CO1 PO1 |
| c. | What is a Transition Curve? List the two functions of a Transition Curve. | 2 | L1 | CO2 PO2 |
| d. | Define "Atmospheric windows" in Remote sensing? | 2 | L1 | CO1 PO1 |
| e. | Define the terms: "Zenith and Nadir" in Astronomical survey. | 2 | L1 | CO3 PO1 |
| | II: PART - B | $\mathbf{9 0}$ | | |
| | UNIT - I | $\mathbf{1 8}$ | | |

1 a. Derive the formula for calculating the elevation of the top of the object when the base is inaccessible, instrument stations in the same vertical

L6 CO1 PO12 plane on the elevated object.
b. Find the reduced level of a church spire ' C ' from the following observations taken from two stations A and B, 50 m apart.

Angle $\mathrm{BAC}=60^{\circ}$ and Angle $\mathrm{ABC}=50^{\circ}$
Angle of elevation from A to top of spire $=30^{\circ}$
$9 \quad$ L3 CO1 PO12
Angle of elevation from B to top of spire $=29^{\circ}$
Staff reading from A on BM of RL $20 \mathrm{~m}=2.500 \mathrm{~m}$
Staff reading from B to same $B M=0.500 \mathrm{~m}$
c. Explain working principles of Total station and its salient features.

L2 CO4 PO12
UNIT - II
2 a . Explain the method of setting out of a simple curve by "Offsets from
9 L2 CO2 PO5 chords produced method".
b. Two tangents intersect at the chainage 1190 m , the deflection angle being 36°. Calculate all the data necessary for setting out a circular curve with radius of 300 m by deflection angle method. The peg interval is 30 m .
c. A Compound railway curve ABC is to have the radius of arc $\mathrm{AB}, 500 \mathrm{~m}$ and that of $\mathrm{BC}, 400 \mathrm{~m}$. The intersection point V of the straights is located and intersection angle is observed to be 136°. If the arc AB is to have a length of 180 m . Calculate the distances VA and VC.

UNIT - III
3 a. Enumerate the characteristics of Transition Curve. List the various methods computing its length.
b. Two parallel railway lines are to be connected by a reverse curve. If the lines are 10 m apart, and the maximum distance between tangent points measured parallel to the straight is 50 m . find the radius R. if $R_{1}=R_{2}=R$.
c. Define vertical curve. Explain the various types of vertical curve with a neat sketch.

UNIT - IV
4 a. Explain the various segments of GPS.
b. Explain the electromagnetic energy and electromagnetic spectrum in remote Sensing.
c. Explain the applications of Remote sensing.

UNIT - V
5 a. Enumerate the areas of GIS applications.
b. Enumerate the differences between a topographic map and a thematic map.
c. Explain the advantages of GIS.

9
L2 CO2 PO5

9
L3 CO2 PO5

18
$9 \quad \mathrm{~L} 4 \mathrm{CO} 3 \mathrm{PO} 3$

L4 CO3 PO3

L2 CO4 PO4

L2 CO4 PO4

L3 CO4 PO4

