U.S.N

\square
P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 Fourth Semester, B.E. - Civil Engineering
 Semester End Examination; July / August - 2022
 Basic Structural Analysis

Time: 3 hrs
Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Identify, formulate and solve problems on frames, trusses, cables and arches.
Co2: Compute the deflections of determinate beams by Macaulay's method, moment area method and conjugate beam
CO3: Interpret the influence line diagram to analyze beams under moving loads.
CO4: Analyze statically indeterminate beams using strain energy, consistent deformation and theorem of three moments

Note: i) PART-A is compulsory. One question from each unit for maximum of TWO marks
ii) PART-B: Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	$\begin{gathered} \text { Questions } \\ \text { I : PART - A } \end{gathered}$	Marks BLs COs10		
I a.	Define static and kinematic indeterminacy?	2	L1	CO1
b.	State conjugate beam method?	2	L1	CO 2
c.	With sketch list the different types of supports in the cable structures?	2	L1	CO1
d.	State Castiglione's theorem?	2	L1	CO 2
e.	Define statically indeterminate structure?	2	L1	CO1
	II : PART - B	90		
	UNIT - I	18		

1 a. Determine the slopes at A and B and maximum deflection in the beam shown in Fig.1(a). Use Macaulay's method. Take $\mathrm{E}=200 \mathrm{GPa}$ and $\mathrm{I}=70 \times 10^{6} \mathrm{~mm}^{4}$.

$9 \quad \mathrm{~L} 4 \quad \mathrm{CO} 2$

9 L4 CO1

Contd... 2
c. Analyze the truss shown in Fig.1(c) by method of joints.

L 4 CO 2
$\mathrm{L} 4 \quad \mathrm{CO} 2$
$\mathrm{L} 4 \quad \mathrm{CO} 2$ principle the maximum tension in the cable.
b. A cable of span 120 m and dip 10 m carries a load of $6 \mathrm{kN} / \mathrm{m}$ of horizontal span. Find the maximum tension in the cable and inclination of the cable at the support. Find the forces transmitted to the supporting pier if the cable passes over smooth pulleys on top of the pier. The anchor cable is at 30° to the horizontal. Determine the max bending moment for the pier if the height of the pier is 15 m .
c. A 3-hinged parabolic arch of span 30 m and central rise of 5 m . It is subjected to a concentrated load of 40 kN at 6 mfrom left support. Calculated the normal thrust, shear and 9 bending moment at 6 m for the left support.

UNIT - IV

4 a . A SSB has a span of 15 m . A UDL of $40 \mathrm{KN} / \mathrm{m}$ and 5 m long crosses the girder from left to right .Draw the influence line diagram for shear force and bending moment at a section 6 n from left end. Use these diagram to calculate the max shear force and bending moment at this section
b. A uniformly distributed load of intensity of $2 \mathrm{KN} / \mathrm{m}$ and 5 m long crosses a simply supported beam of 20 m span from left to right calculate
i) Max SF and Max BM at a section 8 m from the left support
ii) Absolute max BM
c. A SSB of span 1 carries a concentrated load p at a distance of ' a ' and ' b ' from two ends. Find the strain energy stored in the beam and the defections under the load by Castiglione's theorem

UNIT - V
5 a. Draw SFD and BMD for the propped cantilever beam loaded as shown in Fig.5(a) .use consistent deformation method

L3 CO4

L3 CO4

9
L3 CO4
FigQ5.C

