U.S.N

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Electronics and Communication Engineering
Semester End Examination; July / Aug. - 2022 Control Systems
Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1 - Apply Mathematical knowledge to determine the transfer function of a system.
CO2 - Analyze the stability of a system using different techniques.
CO3 - Analyze the response of the system in time and frequency domain and state variable techniques.
CO4 - Develop the mathematical models using different techniques of state variables.
CO5 - Design using MATLAB software for the linear control system problems.
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of $\mathbf{1 8}$ marks from each unit.

Q. No.	$\begin{gathered} \text { Questions } \\ \text { I : PART - A } \end{gathered}$	Marks BLs COs POs10	
I a.	Compare open loop and close loop control systems.	2	L1 CO1 PO1
b.	How are control systems classified depending on the value of damping?	2	L1 CO3 PO1
c.	What is difficulty 1 in root locus method and how it can be overcome?	2	L1 CO2 PO1
d.	What is frequency response? What are the frequency domain specifications?	2	L1 CO3 PO1
e.	Define state and state variable.	2	L1 CO4 PO1
	II : PART - B	90	
	UNIT - I	18	

1 a. For the mechanical system shown in Fig. 1(a);
i) Draw the mechanical network
ii) Write the deferential equations governing the system
iii) Draw the F-V electrical circuits with the corresponding electrical equations

Fig.1(a)
b. Find the overall transfer function $\frac{C(s)}{R(s)}$ for the block diagram shown in Fig. 1(b).

$9 \quad \mathrm{~L} 3 \mathrm{CO} 1 \mathrm{PO} 2$

Fig.1(b)
Contd... 2
c. Find the overall transfer function $\frac{C(s)}{R(s)}$ for the signal flow graph shown in Fig. 1(c).

$9 \quad \mathrm{~L} 3 \mathrm{CO} 1 \mathrm{PO} 2$

Fig.1(c)
UNIT - II
2 a . Derive the expression for unit step response of underdamping second order system.
b. A system is given by differential equation $\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+25 \mathrm{y}=25 \mathrm{x}$, Where $y=$ output and $x=$ input. Determine all time domain specifications for unit step input.
c. A Unity feedback system has $\mathrm{G}(\mathrm{s})=\frac{50}{S(s+5)}$ find the following:
i) Percentage overshoot for a unit step input.
ii) Settling time for a unit step input
iii) Steady state error for an input by the polynomial

$$
r(t)=2+4 t+6 t^{2}, t>0
$$

> UNIT - III

18
3 a. Explain briefly the Routh-Hurwitz criterion and use it to determine the roots,
i) in RHS
ii) in LHS
iii) On $\mathrm{j} \omega$ axis of S plane for polynomial
$S^{6}+S^{5}+5 S^{4}+S^{3}+2 S^{2}-2 S-8$
b. A unity feedback system control system has $A=\pi r^{2} \mathrm{G}(\mathrm{s})=\frac{K(s+13)}{S(s+3)(s+7)}$. Using Routh's criterion, calculate the range of k for which system:
i) Stable
ii) Has its close loop poles more negative than -1 .
c. Sketch the root locus plot for $\mathrm{G}(\mathrm{s})=k \mid \mathrm{s}(\mathrm{s}+3)(\mathrm{s}+5)$ and determine the value of k for $\varepsilon=0.6$.

UNIT - IV

4 a . Explain the terms phase margin and gain margin as related to polar plot and concept of encirclement and Nyquist creation.
b. For a unit feedback system $\mathrm{G}(\mathrm{s})=24 \frac{2(s+5)}{s(s+1)\left(s^{2}+5 s+121\right)}$ sketch Bodeplot and
$9 \quad \mathrm{~L} 3 \mathrm{CO} 3 \mathrm{PO} 3$
$9 \quad \mathrm{~L} 3 \mathrm{CO} 3 \mathrm{PO} 3$
c. Sketch the Nyquist plot and find the range of k for closed loop stability for the loop transfer function $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{k}{S(s+2)(S+10)}$.

UNIT - V

$9 \quad \mathrm{~L} 3 \mathrm{CO} 3 \mathrm{PO} 3$

18
5 a. Obtain state model for a system as shown in Fig. 5(a).

$9 \quad \mathrm{~L} 3 \mathrm{CO} 1 \mathrm{PO} 2$

Fig.5(a)
b. Obtain the state transition matrix for the following system,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -0.5 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0.5 \\
0
\end{array}\right] u
$$

$9 \quad \mathrm{~L} 2 \mathrm{CO} 2 \mathrm{PO} 2$
c. A single input single output system has the state and output equations,

$$
\begin{align*}
& \mathrm{x}^{1}=\left[\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& \mathrm{y}=[50] \mathrm{x}
\end{align*}
$$

i) Determine its transfer function
ii) Find its state transition matrix

