U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; July / Aug. - 2022 Microwaves and Antennas

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1 Apply the knowledge of mathematics and EM fields to understand the parameters, field due to antennas, properties of microwave devices and transmission lines.
- CO2 Analyse the working and performance of microwave transmission lines, microwave IC's and antennas Applying basic concepts of Microwave theory.
- CO3 Examine the working and performance of microwave sources, microwave transmission line and different types of antennas.
- CO4 Analyse the working and performance of microwave devices and antenna arrays.
- CO5 Design of helical, log-periodic and micro strip antennas

Note: I) **PART -** A is compulsory. **Two** marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	Define; (i) Reflection coefficient				
	(ii) Transmission coefficient of a transmission line	2	L4	CO2	PO2
b.	Distinguish between E-plane Tee and H-plane Tee.	2	L4	CO3	PO2
c.	Define Half power beam width and beam Efficiency.	2	L3	CO1	PO1
d.	Write the directivity equation for broadside array and end fire array.	2	L4	CO4	PO2
e.	Mention the 4 feeding method of Microstrip patch antennas.	2	L4	CO5	PO3
	II : PART - B	90			
	UNIT - I	18			
1 a.	Explain the mismatch losses in transmission lines.	9	L4	CO2	PO2
b.	A 50 ohm lossless line connects a matched signal of 100 kHz to a				
	load of 100 ohm. The load power in 100 mW. Calculate;				
	(i) Voltage reflection coefficient of the load	9	L4	CO2	DO2
	(ii) VSWR of the load	9	L4	CO2	102
	(iii) Position of first V_{max} and V_{min}				
	(iv) Impedance at V_{min} and V_{max} and values of V_{max} and V_{min}				
c.	Discuss the field equations for TE and TM waves in Rectangular	9	L4	CO2	DO2
	waveguide.	9	L4	CO2	102
	UNIT - II	18			
2 a.	With a neat diagram, explain the working of an E-plane Tee junction,	9	т 4	CO2	DO2
	also derive its scattering matrix.	9	L4	CO3	PO2
b.	Discuss the construction and working of Precision rotary phase shifter with related equations and diagram.		L4	CO4	DO2
			L/ +	CU4	1 02
	Contd 2				

P18EC63			Page No 2		
c.	What is "Transferred electron effect" in Semiconductors? Explain the	0	τ 4	CO2	DO2
	TT mode LSA mode of operation of Gunn diode.	9	L4	CO3	PO2
	UNIT - III	18			
3 a.	Discuss the following terms with respect to Antenna;				
	(i) Radiation pattern Lobes	9	L3	CO1	PO1
	(ii) Directivity and Gain	9	L3	COI	POI
	(iii) Radiation Efficiency				
b.	A lossless resonant half wavelength dipole antenna with input				
	impedance of 73 ohms, is to be connected to a transmission line	9	1.0	CO4	DO2
	whose characteristic impedance is 50 ohms. The pattern of antenna is	9	L2	CO4	PO2
	$U = B_0 Sin^3 \theta$. Calculate the overall maximum gain of the antenna.				
c.	Analyze the radiation mechanism for the following:				
	(i) Single-wire using electromagnetic radiation equation	9	L4	CO2	PO2
	(ii) Two-wires and Dipole				
	UNIT - IV	18			
4 a.	Derive the equation for magnetic field Vector A and electric field	9	L4	CO3	PO2
	components due to infinitesimal dipole antenna.	,	LŦ	CO3	102
b.	Derive an array factor and HPBW expression in case of linear array	9	L4	CO4	PO2
	of 'n' isotropic point source of equal amplitude and spacing.	,	LŦ	COT	102
c.	Derive an expression for Power density and radiation resistance of	9	L4	CO4	PO2
	infinitesimal dipole.	,	LŦ	COT	102
	UNIT - V	18			
5 a.	Analyze the following for rectangular microstrip patch antenna with				
	related equation and diagrams;				
	(i) Effective length and width	9	L4	CO5	PO3
	(ii) Resonant frequency				
	(iii) Design procedure				
b.	With a neat diagram, explain the working principle of Helical	9	L4	CO5	PO3
	antenna along with the design procedure.	,	LT	003	103
c.	Discuss the design of dipole array with design equation and its	9	L4	CO5	PO3
	design procedure.		LT	003	103