U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Electronics and Communication Engineering
Semester End Examination; July / Aug. - 2022 Microwaves and Antennas
Time: 3 hrs
Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1 - Apply the knowledge of mathematics and EM fields to understand the parameters, field due to antennas, properties of microwave devices and transmission lines.
CO2 - Analyse the working and performance of microwave transmission lines, microwave IC's and antennas Applying basic concepts of Microwave theory.
CO3 - Examine the working and performance of microwave sources, microwave transmission line and different types of antennas.
CO4 - Analyse the working and performance of microwave devices and antenna arrays.
CO5 - Design of helical, log-periodic and micro strip antennas
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions

I : PART - A
Marks BLs COs POs
10
I a. Define; (i) Reflection coefficient
(ii) Transmission coefficient of a transmission line
b. Distinguish between E-plane Tee and H-plane Tee.
$2 \quad \mathrm{~L} 4 \quad \mathrm{CO} 2 \quad \mathrm{PO} 2$
c. Define Half power beam width and beam Efficiency.
d. Write the directivity equation for broadside array and end fire array.

2
L4 CO3
PO2
e. Mention the 4 feeding method of Microstrip patch antennas.

II : PART - B

2 L3 CO1
PO1

UNIT - I
18
1 a. Explain the mismatch losses in transmission lines.
9
L4 CO 2
PO 2
b. A 50 ohm lossless line connects a matched signal of 100 kHz to a load of 100 ohm. The load power in 100 mW . Calculate;
(i) Voltage reflection coefficient of the load
(ii) VSWR of the load
(iii) Position of first $V_{\max }$ and $V_{\text {min }}$
(iv) Impedance at $V_{\min }$ and $V_{\max }$ and values of $V_{\max }$ and $V_{\text {min }}$
c. Discuss the field equations for TE and TM waves in Rectangular waveguide.
UNIT - II
$9 \quad \mathrm{~L} 4 \quad \mathrm{CO} 2 \quad \mathrm{PO} 2$

2 a. With a neat diagram, explain the working of an E-plane Tee junction, also derive its scattering matrix.
b. Discuss the construction and working of Precision rotary phase shifter with related equations and diagram.
c. What is "Transferred electron effect" in Semiconductors? Explain the TT mode LSA mode of operation of Gunn diode.

UNIT - III
3 a. Discuss the following terms with respect to Antenna;
(i) Radiation pattern Lobes
(ii) Directivity and Gain
(iii) Radiation Efficiency
b. A lossless resonant half wavelength dipole antenna with input impedance of 73 ohms, is to be connected to a transmission line whose characteristic impedance is 50 ohms. The pattern of antenna is $\mathrm{U}=\mathrm{B}_{0} \operatorname{Sin}^{3} \theta$. Calculate the overall maximum gain of the antenna.
c. Analyze the radiation mechanism for the following:
(i) Single-wire using electromagnetic radiation equation
(ii) Two-wires and Dipole

UNIT - IV

4 a. Derive the equation for magnetic field Vector A and electric field components due to infinitesimal dipole antenna.
b. Derive an array factor and HPBW expression in case of linear array of ' n ' isotropic point source of equal amplitude and spacing.
c. Derive an expression for Power density and radiation resistance of infinitesimal dipole.

UNIT - V

5 a. Analyze the following for rectangular microstrip patch antenna with related equation and diagrams;
(i) Effective length and width
(ii) Resonant frequency
(iii) Design procedure
b. With a neat diagram, explain the working principle of Helical antenna along with the design procedure.
c. Discuss the design of dipole array with design equation and its design procedure.

