


The Students will be able to:

CO1 - Apply basic mathematical and Signal Processing knowledge to understand different image processing stages.

Course Outcomes

CO2 - Analyse images in the partial frequency domain using various methods.

CO3 - Analyse an image through image segmentation, wavelets and multi resolution processing.

CO4 -Apply knowledge of image processing in image restoration, color, morphology processing and your representation and description.

CO5 - *Develop algorithm to perform image processing using modern tool in a group and acquire team playing skills.*

<u>Note</u> :I) PART -	A is	compulsor	y. Two	marks	for	each	question.
	_			-			-

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

,	FART - D : Answer any <u>Iwo</u> sub questions (from a, b, c) for maximum of 18 marks	from euc	n unu.		
Q. No.	Questions	Marks	BLs	COs	POs
	I : PART - A	10			
I a.	Specify the elements of DIP system.	2	L1	CO1	PO1
b.	Define spatial filtering.	2	L1	CO2	PO1
с.	What are the types of noise models?	2	L1	CO4	PO1
d.	List the hardware oriented color models.	2	L1	CO4	PO1
e.	Write the application of segmentation.	2	L1	CO3	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	With block diagram, Explain the fundamental steps used in digital image processing.	9	L2	CO1	PO1
b.	Explain the process of sampling and quantization with relevant diagram.	9	L2	CO1	PO1
c.	Explain image acquisition using single sensor strips and sensor array with relevant diagram.	9	L2	CO1	PO1
	UNIT - II	18			
2 a.	Explain the power law transmission and piece-wise linear contrast stretching with a neat graphical illustration.	9	L2	CO2	PO2
b.	Explain the smoothing of image in frequency domain using,				
	i) Ideal low pass filter	9	L2	CO2	PO2
	ii) Butterworth low pass filter				
c.	Explain the histogram equalization and histogram matching process.	9	L2	CO2	PO1
	UNIT - III	18			
3 a.	With mathematical equations, discuss the minimum mean square error filtering.	9	L2	CO4	PO1
	Contd2				

P18EC81			Page No 2
b.	Explain arithmetic mean filter and median filter used for noise removal in image processing.	9	L2 CO4 PO1
c.	Discuss the three principle way of estimate the degradation function for use in image restoration.		L2 CO4 PO2
	UNIT - IV		
4 a.	Discuss the following colour models:		
	i) RGB color modelii) CMY model	9	L2 CO4 PO1
	iii) HSI model		
b.	Discuss in detail dilation and erosion operations.	9	L2 CO4 PO1
c.	Explain opening and closing operations of morphological operators.	9	L2 CO4 PO1
	UNIT - V	18	
5 a.	Explain OTSU algorithm for global thresholding using suitable equations.	9	L2 CO3 PO2
b.	Explain image gradient and gradient operators for edge detection.	9	L2 CO3 PO2
c.	Discuss the process of region splitting and merging for region based segmentation.	9	L3 CO3 PO2

* * * *