U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; July / Aug. - 2022 Introduction to Basics of Information Technology

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Will be able to formulate computer arithmetic and understand the performance requirements of systems.
- CO2: Will be able to formulate computer arithmetic and understand the performance requirements of systems.
- CO3: Will be able to identify the problems related to task synchronization and deadlock.
- CO4: Will use appropriate data structures like arrays, linked list, stacks and queues to solve real world problems efficiently.
- CO5: Will be able to represent and manipulate data using nonlinear data structures like trees to design algorithms for various applications.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	List the condition for overflow in integer arithmetic	2	L1	CO1	PO1
b.	List the achievements of the operating system	2	L2	CO2	PO1
c.	What are the three operations performed on semaphores	2	L2	CO3	PO1
d.	What is queue?	2	L1	CO4	PO1
e.	Draw the figure for sort classification	2	L3	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	Draw and explain addition subtraction logic network.	9	L1	CO1	PO1
b.	Explain 4-bit carry-look ahead adder.	9	L3	CO1	PO1
c.	Explain Booth algorithm with example.	9	L2	CO1	PO1
	UNIT - II	18			
2 a.	With neat figure, explain computer hardware and software structure.	9	L2	CO2	PO1
b.	Illustrate and explain five-state process model.	9	L2	CO2	PO1
c.	Draw and explain relationship between operating system and	9	12	CO2	PO1
	user process.	7	L2	CO2	101
	UNIT - III	18			
3 a.	With neat figure explain indirect process communication.	9	L2	CO3	PO2
b.	Explain the conditions of deadlock and how it can be prevented.	9	L2	CO3	PO2
c.	Explain what are the parameters required for memory management.	9	L2	CO3	PO2

P18EC643 Page No... 2

	UNIT - IV	18			
4 a.	What are the basic structures used to implement an ADT? Explain	9	12	CO4	PO3
	in detail.		LL	COT	103
b.	With neat figure explain basic stack operations.	9	L2	CO4	PO3
c.	Write an algorithm for insertion and deletion of data form a queue.	9	L2	CO4	PO3
	UNIT - V	18			
5 a.	UNIT - V With neat figure explain the terminologies used in tree.	18 9	L1	CO5	PO3
5 a. b.		9			
_	With neat figure explain the terminologies used in tree.			CO5	

* * * *