P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Eighth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; July / Aug. - 2022 Satellite Communication

Time: 3 hrs Max. Marks: 100

Course Outcome

The Students will be able to:

- CO1: Recall the fundamentals of orbital mechanics, the characteristics of common orbits used by communications another satellite.
- CO2: Understand the systems required by a communications satellite to function and the trade-offs and limitations encountered in the design of a communications satellite system.
- CO3: Model the concepts of signal propagation affects, link design, rain fading and link availability and perform interference calculations.
- CO4: Calculate an accurate link budget for a satellite or other wireless communication networks.
- CO5: Understand the analog and digital technologies used for satellite communication networks.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions I : PART - A	Marks 10	BLs	COs	POs
I a.	Calculate the time in days, hours, minutes and seconds for the epoch	2	L2	CO1	PO1
	day 324.95616765.				
b.	Write the equation of Faraday rotation angle ϕ in the atmosphere.	2	L1	CO2	PO2
c.	Determine the miss probability for the following values:	2	L3	CO3	PO3
	$N: = 40 E: = 5 P: = 10^{-3}$	2	LJ	CO3	103
d.	Write the equation for the power output of the TWTA.	2	L3	CO4	PO4
e.	Write any two applications seen for Radar Sat.	2	L1	CO5	PO5
	II : PART - B	90			
	UNIT - I	18			
1 a.	Discuss the following:	9	L2	CO1	P ∩1
	i) Universal Time ii) Julian Dates iii) Sidereal Time	,	LZ	COI	101
b.	A geostationary satellite is located at 90°W. Calculate the azimuth				
	angle for an earth station antenna at latitude 35° N and longitude	9	L3	CO1	PO1
	100°W. Also find the range and antenna elevation angle.				
c.	State and explain Kepler's law of planetary motion with neat diagram	0	1.0	CO1	DO1
	and equations.	9	L2	CO1	POI
	UNIT - II	18			
2 a.	With block diagram, explain satellite wide band receiver in detail.	9	L2	CO2	PO2
b.	Explain transmit-receive earth station with a more detailed	0	1.0	000	DO2
	block diagram.	9	L2	CO2	PO2
c.	Briefly explain the antenna subsystem.	9	L2	CO2	PO2

P18EC821			Page No 2			
	UNIT - III	18				
3 a.	Discuss FDMA downlink analysis in detail.	9	L3	CO3	PO2	
b.	Explain the following:					
	i) S/N ratio for FM video transmission	0	1.0	CO2	DO1	
	ii) SCPC FM links	9	L2	CO3	POI	
	iii) FM threshold					
c.	Explain reference burst, preamble and post amble with respect	9	L2	CO3	DO1	
	to TDMA.	9	L2	COS	FUI	
	UNIT - IV	18				
4 a.	Describe transmission losses.	9	L2	CO4	PO2	
b.	Explain the following:					
	i) Output back off	9	L3	CO4	PO2	
	ii) Satellite TWTA output					
c.	Explain Enhancing TCP over satellite channels using standard	9	L2	CO4	DO1	
	mechanisms.	9	L2	C04	101	
	UNIT - V	18				
5 a.	With a block diagram, explain MPEG-2 Encoder paths.	9	L2	CO5	PO1	
b.	Explain the following:					
	i) Frequencies and polarization	9	L3	CO5	PO1	
	ii) Transponder capacity					
c.	Explain Radar sat objectives and applications in details.	9	L2	CO5	PO2	

* * * *