P18EE	62				1	Page	No	1	
	U.S.N								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Electrical and Electronics Engineering Semester End Examination; July / Aug 2022 Digital Signal Processing Time: 3 hrs Max. Marks: 100									
Course Outcomes									
CO1 – A CO2 – T CO3 – I CO4 – L	lents will be able to: pply the knowledge of DFT and FFT in its various applications. Fransformation of digital signals into the frequency domain using FFT/DFT mplementation or realization of different digital structures for IIR and FIR Design and Implementation of IIR filters using Bilinear Transformation. pply the knowledge of DSP Processor and its applications. Thermal energy	system.	<i>s</i> .	on sys	stems ar	ıd app	olicatio	ns	
	PART - A is compulsory. Two marks for each question. PART - B : Answer any Two sub questions (from a b c) for a Maxi	1111111 /	of 18 m	nark	r from a	ach u	nit		
Q. No.	PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maxi Questions	тит с	y 10 h		s jrom e Marks			POs	
C	I : PART - A				10	~			
I a.	State Linearity property.				2	L1	CO1	PO1	
b.	List the similarities between DIT and DIF FFT algorithm.				2	L1	CO2	PO1	
с.	What are the two types of digital filter?				2	L1	CO3	PO1	
d.	What is rectangular window? Explain				2	L1	CO4	PO1	
e.	List the application of DSP processors.				2	L1	CO5	PO1	
	II : PART - B				90				
1 a.	UNIT - I Find N-point DFT of the following sequences:				18				
1 44	i) $\mathbf{x}(n) = \cos\left(\frac{2\pi}{N}K_0n\right); 0 \le n \le N-1$				0		~ ~~		
	1				9	L3	CO1	PO2	
	ii) $y(n) = \sin(\frac{2\pi}{N}K_0n); 0 \le n \le N-1$								
b.	State and Prove:								
	i) Circular time shift property				9	L3	CO1	PO2	
	ii) Circular frequency property								
c.	Find circular convolution of two given sequence $x_1(n) = \{1, 2\}$, 3, 1]	and }						
	$x_2(n) = \{4, 3, 2, 2\}$ using time domain approach and using fr	equen	су		9	L3	CO1	PO2	
	domain approach.								
	UNIT - II				18				
2 a.	Develop a DIF FFT algorithm to compute N-point DFT x(K)	of an			9	L3	CO2	PO3	
	N-Point sequence $x(n)$.				,	10	002	100	
b.	Given $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$, find $x(K)$ using DIT FFT a	lgoritl	hm.		9	L3	CO2	PO3	
c.	Obtain 8-poing DFT of the following sequence using radix-2	DIF F	FT						
	algorithm. Show all the result along the signal flow graph, give	ven			9	L3	CO2	PO3	
	$\mathbf{x}(\mathbf{n}) = \{2, 1, 2, 1\}$	C -		r					
			ontd	. ∠					

P18EE62			Page No 2
	UNIT - III	18	
3 a.	Obtain parallel realization for the system described by,		
	$H(z) = \frac{(1+z^{-1})(1+2z^{-1})}{(1+\frac{1}{2}z^{-1})(1-\frac{1}{4}z^{-1})(1+\frac{1}{8}z^{-1})}$	9	L3 CO3 PO3
b.	An LTI digital IIR filter is specified by the following TF,		
	$H(z) = \frac{(z-1)(z-2)(z+1)z}{\left[z - \left(\frac{1}{2} + j\frac{1}{2}\right)\right] \left[z - \left(\frac{1}{2} - \frac{1}{2}j\right)\right] \left[z - \frac{1}{4}j\right] \left[z - \frac{1}{4}j\right]}$	9	L3 CO3 PO3
	Realize the system using the following forms:		
	i) Direct form I ii) Direct form II		
с.	Obtain the Direct and Cascade form realization of following FIR filter	0	
	$H(z) = (1 - \frac{1}{4}z^{-1} + \frac{3}{8}z^{-2}) (1 - \frac{1}{8}z^{-1} - \frac{1}{2}z^{-2})$	9	L3 CO3 PO3
	UNIT - IV	18	
4 a.	A Butterworth low pass filter has to meet the following specification:		
	i) Pass band gain $k_p = -1 \text{ dB}$, at $\Omega_p = 4 \text{ rad/sec}$		
	ii) Stop band attenuation $K_s \ge 20 \text{ dB}$ at Ω_s = 8 rad/sec	9	L3 CO4 PO3
	Determine the transfer function of the lowest order Butterworth filter to		
	meet the above specification.		
b.	The analog filter $H_a(s) = \frac{s+1}{s^2+5s+6}$, find $H(z)$ using impulse invariance	9	L3 CO4 PO3
	transformation take $T = 0.1$ sec.		
с.	Design the symmetric FIR low pass filter whose desired frequency		
	response is given as,		
	$H_{d}(\omega) = \begin{cases} e^{-j\omega\tau} & \text{for } \omega \le \omega_{c} \text{ otherwise The length of the filter should be 7.} \\ 0 & \text{for } \omega \le \omega_{c} \text{ otherwise The length of the filter should be 7.} \end{cases}$	9	L3 CO4 PO3
	and $\omega_c = 1$ radians/sample. Use rectangular window.		
	UNIT - V	18	
5 a.	Explain the architecture of TMS320C5X processor.	9	L2 CO5 PO1
b.	With a neat block diagram, explain the following:		
	i) Servo control using TMS320 processor	9	L2 CO5 PO1
	ii) Video signal processing using TMS320Cxx processor		
c.	List the features of TMS 320 C5x processors.	9	L2 CO5 PO1

* * * *