U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; July / Aug. - 2022
Embedded Systems

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: To study the applications and design challenges of Embedded System.
- CO2: Analyze the selection of processor and applications of Embedded System in various fields.
- CO3: To understand the different types of memories and protocols used in Embedded System.
- CO4: Analyze the design issues and different models used in Embedded System.
- CO5: To get the basic knowledge of Real time operating systems and interrupts.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

Q. No.	Questions	Marks	BLs	COs	POs
	I: PART - A	10			
I a.	Define an embedded system. Mention various purposes of embedded system.	2	L1	CO1	PO2
b.	Differentiate between microprocessors and microcontrollers.	2	L2	CO2	PO2
c.	What in a cache memory? Mention various cache memory mapping techniques.	2	L2	CO3	PO2
d.	What do you mean by hardware–software co-design? Mention fundamental issue to be considered for hardware software co-design.	2	L2	CO4	PO2
e.	What is task? List out various task states.	2	L1	CO5	PO2
	II : PART - B	90			
	UNIT - I	18			
1 a.	Classify and explain embedded system based on complexity and performance.	9	L1	CO1	PO2
b.	List and explain various design metrics of embedded system design.	9	L2	CO1	PO2
c.	What is an IC technology? Briefly describe various IC technologies.	9	L2	CO1	PO2
	UNIT - II	18			
2 a.	Explain various addressing modes of general purpose processor.	9	L2	CO2	PO2
b.	Explain the architecture of general purpose processor.	9	L2	CO2	PO2
c.	Write a note on following peripherals of the single purpose processor;				
	i) UART ii) PWM	9	L2	CO2	PO2

P18EE643					Page No 2		
	UNIT - III	18					
3 a.	Explain internal structure of 4 x 4 capacity RAM with the aid of neat diagram.	9	L2	CO3	PO2		
b.	Describe simplified strobed and handshake protocols to transfer data between master and slave.	9	L2	CO3	PO2		
c.	Explain any three types of serial protocol.	9	L2	CO3	PO2		
	UNIT - IV	18					
4 a.	Describe state machine model used in embedded system design.	9	L2	CO4	PO2		
b.	What are the building blocks UML? Explain.	9	L1	CO4	PO2		
c.	Explain the important hardware software "tradeoffs" in hardware software partitioning.	9	L2	CO4	PO2		
	UNIT - V	18					
5 a.	Explain round robin architecture with an illustrative example.	9	L2	CO5	PO2		
b.	What is shared data problem? Explain how it can be solved using semaphores.	9	L2	CO5	PO2		
c.	Describe in brief message queues, mail box and pipes services of the RTOS.	9	L2	CO5	PO2		