
| Bequind o                                                      | U.S.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                       |              |                |            |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------------|----------------|------------|
|                                                                | P.E.S. College of Engineering, Mandya - 571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                    | )1                    |              |                |            |
| TO THE OWNER OF THE OWNER                                      | (An Autonomous Institution affiliated to VTU, Belagavi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | na                    |              |                |            |
|                                                                | Fourth Semester, B. E Industrial and Production Engine<br>Semester End Examination; July / Aug 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eri                   | ng                    |              |                |            |
|                                                                | <b>Theory of Machines</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                       |              |                |            |
| Time: 3                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M                     | ax.                   | Mar          | ks: .          | 100        |
| The Stud                                                       | ents will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                       |              |                |            |
| CO1 - C<br>n<br>SI<br>CO2 - E<br>CO3 - KI<br>C<br>CO4 - D<br>p | Calculate mobility (number of degrees-of-freedom) and enumerate rigid links and<br>mechanisms, and to Understand gear mechanism classification and to becom-<br>tandardization and specification in design.<br>Explain Terminology of gears and Importance of gear trains and their practical appli<br>now uses and advantages of belt drives Types and their nomenclature, Relationship<br>ommonly used design parameters.<br>raw inversions and determine velocity and acceleration of different mechanisms, an<br>ower due to friction in various machine elements and Importance of Governors. | e fa<br>catio<br>betv | milio<br>ons.<br>ween | ar w<br>belt | ith g<br>tensi | ear<br>ons |
|                                                                | cplain Gyroscopic Effects and Gyroscope in automobile sector.<br><b>PART - A</b> is compulsory. <b>Two</b> marks for each question.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |              |                |            |
|                                                                | PART - A is compusory. Two marks for each question.<br>PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                      | from                  | n ea                  | ch un        | it.            |            |
| Q. No.                                                         | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ma                    | rks                   | BL           | s CO           | Os         |
|                                                                | PART -A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                     | 0                     |              |                |            |
| I a.                                                           | Define Kutzback criterion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                     | 2                     | L1           | CC             | <b>D</b> 1 |
| b.                                                             | List the methods to avoid interface for a pair of spur gears in contact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                     | 2                     | L1           | CC             | 02         |
| c.                                                             | Define the maximum power transmission condition in a belt drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                     | 2                     | L1           | CC             | 03         |
| d.                                                             | Explain sensitiveness in a governor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                     | 2                     | L1           | CC             | )4         |
| e.                                                             | Explain the Gyroscopic effect while the aeroplane takes a;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                       |              |                |            |
|                                                                | i) Left turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                       |              |                |            |
|                                                                | ii) Right turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 2                     | L1           | CC             | )5         |
|                                                                | Assume the propeller to be rotating in the clockwise direction when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |              |                |            |
|                                                                | viewed from the front end of the aeroplane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                       |              |                |            |
|                                                                | PART - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                     | 0                     |              |                |            |
|                                                                | UNIT - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                     | 8                     |              |                |            |
| 1 a.                                                           | Derive the condition for the Ackerman steering gear mechanism.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ç                     | 9                     | L3           | CC             | <b>D</b> 1 |
| b.                                                             | With a neat sketch explain any one inversion of four bar chain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ç                     | 9                     | L1           | CC             | D1         |
| c.                                                             | Determine the mobility of the members shown in fig. 1(c)i, 1(c)ii and 1(c)iii and state that whether it is a mechanism or not.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ģ                     | 9                     | L3           | CC             | D1         |



## Page No... 3

18

## P18IP46

UNIT - IV

4 a. The rotor has the following properties:

|            | $m_1=3kg$                                                                                      | $r_1=30mm$                                                                               | $\phi_I = 30^o$                                                                                                                | <i>l</i> <sub>1</sub> =100mm                                                                                                           |                |     |            |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------------|--|--|--|--|
|            | $m_2=4kg$                                                                                      | $r_2=20mm$                                                                               | <i>φ</i> <sub>2</sub> =120°                                                                                                    | <i>l</i> <sub>2</sub> =300mm                                                                                                           |                |     |            |  |  |  |  |
|            | $m_3=2kg$                                                                                      | $r_3=25mm$                                                                               | $\phi_3 = 270^{\circ}$                                                                                                         | <i>l</i> <sub>3</sub> =600mm                                                                                                           | 14             | 1.2 | CO4        |  |  |  |  |
|            | $r_{c_1} = 35mm \ and \ r_{c_2} = 20mm$                                                        |                                                                                          |                                                                                                                                |                                                                                                                                        |                |     | CO4        |  |  |  |  |
|            | $l_1$ , $l_2$ and $l_3$                                                                        |                                                                                          |                                                                                                                                |                                                                                                                                        |                |     |            |  |  |  |  |
|            | between the bearings is 500 mm. Determine the counter mass to be placed                        |                                                                                          |                                                                                                                                |                                                                                                                                        |                |     |            |  |  |  |  |
|            | in places of n                                                                                 | $n_1$ and mid way                                                                        | between m <sub>2</sub> ar                                                                                                      | nd m <sub>3</sub> for complete balance.                                                                                                |                |     |            |  |  |  |  |
| b.         | Derive an exp                                                                                  | pression for the                                                                         | governor speed                                                                                                                 | d for a porter governor.                                                                                                               | 14             | L3  | CO4        |  |  |  |  |
| c.         | . Define controlling force for a porter and Hashthell governor.                                |                                                                                          |                                                                                                                                |                                                                                                                                        |                | L1  | CO4        |  |  |  |  |
| UNIT - V   |                                                                                                |                                                                                          |                                                                                                                                |                                                                                                                                        |                |     |            |  |  |  |  |
|            |                                                                                                |                                                                                          | UNIT - V                                                                                                                       |                                                                                                                                        | 18             |     |            |  |  |  |  |
| 5 a.       | Explain the g                                                                                  | yroscopic effec                                                                          |                                                                                                                                | ane.                                                                                                                                   | <b>18</b><br>9 | L1  | CO5        |  |  |  |  |
| 5 a.<br>b. |                                                                                                | yroscopic effec<br>yroscopic effec                                                       | ts on an aeropl                                                                                                                |                                                                                                                                        |                |     | CO5<br>CO5 |  |  |  |  |
|            | Explain the g                                                                                  | yroscopic effec                                                                          | ts on an aeropl<br>ts on a Naval s                                                                                             |                                                                                                                                        | 9              |     |            |  |  |  |  |
| b.         | Explain the g                                                                                  | yroscopic effec<br>a marine turbir                                                       | ts on an aeropl<br>ts on a Naval s<br>ne has a mome                                                                            | hip.                                                                                                                                   | 9              |     |            |  |  |  |  |
| b.         | Explain the g<br>The rotor of<br>rotates at 300                                                | yroscopic effec<br>a marine turbir<br>00 rpm. Clockw                                     | ts on an aeropl<br>ts on a Naval s<br>ne has a mome<br>ise when view                                                           | hip.<br>ent of inertia of 750 kg/m <sup>2</sup> and                                                                                    | 9              |     |            |  |  |  |  |
| b.         | Explain the g<br>The rotor of<br>rotates at 300<br>with angular                                | yroscopic effec<br>a marine turbir<br>00 rpm. Clockw                                     | ts on an aeropl<br>ts on a Naval s<br>ne has a mome<br>ise when view<br>nonic motion                                           | hip.<br>ent of inertia of 750 kg/m <sup>2</sup> and<br>ed from left. If the ship pitches<br>having a periodic time of                  | 9              | L1  |            |  |  |  |  |
| b.         | Explain the g<br>The rotor of<br>rotates at 300<br>with angular<br>16 seconds ar               | yroscopic effec<br>a marine turbir<br>00 rpm. Clockw<br>r simple harn                    | ts on an aeropl<br>ts on a Naval s<br>ne has a mome<br>ise when view<br>nonic motion<br>e of 0.1 rad, fine                     | hip.<br>ent of inertia of 750 kg/m <sup>2</sup> and<br>ed from left. If the ship pitches<br>having a periodic time of<br>d the         | 9<br>9         | L1  | CO5        |  |  |  |  |
| b.         | Explain the g<br>The rotor of<br>rotates at 300<br>with angular<br>16 seconds ar<br>i) Maximum | yroscopic effec<br>a marine turbir<br>00 rpm. Clockw<br>r simple harn<br>nd an amplitude | ts on an aeropl<br>ts on a Naval s<br>he has a mome<br>ise when view<br>honic motion<br>e of 0.1 rad, fin-<br>y of the rotor a | hip.<br>ent of inertia of 750 kg/m <sup>2</sup> and<br>ed from left. If the ship pitches<br>having a periodic time of<br>d the<br>axis | 9<br>9         | L1  | CO5        |  |  |  |  |

\* \* \* \*