U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B. E. - Information Science and Engineering
Semester End Examination; July / August - 2022
Finite Automata and Formal Languages
Time: 3 hrs
Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Construct regular expression and finite automata
CO2: Analyze regular Language
CO3: Design context free grammars
CO4: Design push down automata
CO5: Design Turing machine
Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions I:PART - A	Marks 10		COs POs
I. a.	Define Deterministic Finite Automata.	2	L1	CO1
b.	Differentiate between Distinguishable and indistinguishable pair of states.	2	L1	CO 2
c.	Define Chomsky Normal Form.	2	L1	CO 3
d.	Define deterministic Pushdown automata.	2	L1	CO 4
e.	What are the components of Turing machine?	2	L1	CO 5
	II:PART - B	90		
	UNIT -I	18		

1 a. Design DFA to accept the following languages:
i) $L=\left\{a b^{5} w b^{4} \mid w \in\{a, b\}^{*}\right\}$
$9 \quad$ L3 CO 1
ii) Strings of a 's and b 's having even no. of a 's and b 's
iii) Strings of a 's and b 's ending with substring $a b b$
b. Give the procedure to convert NFA to DFA. Convert the following NFA into equivalent DFA.

c. Define regular expression. Obtain regular expression for the following:
i) Strings of 0's and 1's and having no consecutive zeros

iii) Strings of a 's and b 's whose length is multiple of 3

UNIT- II
2 a. State pumping lemma for regular languages show that;
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}!}: \mathrm{n} \geq 0\right\}$ is not regular.
b. What is $\in-$ NFA? Covert the following $\in-$ NFA to equivalent DFA.

$9 \quad$ L3 CO2
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 2$

18
3 a. Define CFG. Construct CFG for the following languages:
i) $L=\left\{a^{n} b^{m}: m \geq n\right.$ and $\left.n \geq 0\right\}$
ii) $L=\left\{0^{i} 1^{j} \mid i \neq j, i \geq 0\right.$ and $\left.j \geq 0\right\}$
iii) $\mathrm{L}=\{\mathrm{w}:|\mathrm{w}| \bmod 3 \neq|\mathrm{w}| \bmod 2\}$ on $\sum=\{\mathrm{a}\}$
b. State and prove pumping lemma for context free languages.
c. Define ambiguous grammar. Check whether the given grammar is ambiguous or not.
$S \rightarrow i C t S / i C t S e S / a$
$C \rightarrow b$

UNIT - IV

4 a . Construct NPDA to accept the following language:
$\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}}: \mathrm{W} \in\{\mathrm{a}, \mathrm{b}\}^{+}\right\}$
b. Convert a CFG to its equivalent PDA
$\mathrm{S} \rightarrow \mathrm{aABB} / \mathrm{aAA}$
$\mathrm{A} \rightarrow \mathrm{aBB} / \mathrm{a}$
L3 CO4
$\mathrm{B} \rightarrow \mathrm{bBB} / \mathrm{A}$
$\mathrm{C} \rightarrow \mathrm{a}$
c. Find a CFG corresponding to a PDA, whose transitions are given below:
$\delta\left(q_{0}, a, Z\right)=\left(q_{0}, A Z\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{A}\right)=\left(\mathrm{q}_{3}, \in\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{~A}\right)=\left(\mathrm{q}_{1}, \epsilon\right)$
$\delta\left(\mathrm{q}_{1}, \in, \mathrm{z}\right)=\left(\mathrm{q}_{2}, \in\right)$
$\delta\left(q_{3}, \in, z\right)=\left(q_{0}, A z\right)$
UNIT - V 18
5 a . Discuss the working of standard Turing machine. Construct machine to accept the language of Palindromes over $\{0,1\}$.
b. Discuss the following:
i) Universal Turing machine
9
L2 CO5
ii) Non deterministic Turning machine
c. Discuss the working of multi tape turning machine.

9 L2 CO5

