

- ii) String of a's and b's in which third symbol from right end is 'a' and L3 CO1 9 fourth symbol is 'b'.
- iii) Strings of a's and b's whose length is multiple of 3

P18IS4	43	Ра	ge No 2
	UNIT- II	18	
2 a.	State pumping lemma for regular languages show that;	9	L3
	$L = \{a^{n!} : n \ge 0\}$ is not regular.	9	CO2 L4
b.	What is \in -NFA? Covert the following \in -NFA to equivalent DFA.		
	C		
	ε ε , b ε b (\mathfrak{H})	9	L3 CO2
	\rightarrow (1) $\overline{a,c}$		
	E		
C	Minimize the number of states in the following DFA:		
c.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
	$\rightarrow A$ B E		
	B C F		
	*C D H	9	L3 CO2
	D E H E F I		
	*F G B		
	G H B		
	H I C *I A E		
	UNIT- III	18	
3 a.	Define CFG. Construct CFG for the following languages:		
	i) $L = \left\{ a^n b^m : m \ge n \text{ and } n \ge 0 \right\}$		L1
	ii) $L = \left\{ 0^{i} 1^{j} i \neq j, i \ge 0 \text{ and } j \ge 0 \right\}$	9	L3 CO3
	iii) L= {w: $ w \mod 3 \neq w \mod 2$ } on $\sum = \{a\}$		
b.	State and prove pumping lemma for context free languages.	9	L4 CO3
c.	Define ambiguous grammar. Check whether the given grammar is		
	ambiguous or not.	9	L2 CO5
	$S \rightarrow iCtS / iCtSeS / a$,	12 005
	$C \rightarrow b$		
	UNIT - IV	18	
4 a.	Construct NPDA to accept the following language:	9	L3 CO4
	$L=\{ww^{R}: W\in \{a,b\}^{+}\}$		
b.	Convert a CFG to its equivalent PDA		
	S→aABB/aAA		
	A→aBB/a	9	L3 CO4
	B→bBB/A		
	$C \rightarrow a$ Contd3		

P18IS43

Page No... 3

c.	Find a CFG corresponding to a PDA, whose transitions are given below:		
	$\delta\left(q_{0},a,Z\right)=\left(q_{0},AZ\right)$		
	$\delta\left(q_{0},a,A\right)=\left(q_{3},\in\right)$	9	L3 CO4
	$\delta(q_0, b, A) = (q_1, \epsilon)$	9	
	$\delta\left(q_{1},\in,z\right)=\left(\ q_{2},\in\right)$		
	$\delta(q_3, \in, z) = (q_0, Az)$		
	UNIT - V	18	
5 a.	Discuss the working of standard Turing machine. Construct machine to		L23 CO5
5 a.		9	L2,3 CO5
5 a. b.	Discuss the working of standard Turing machine. Construct machine to		L2,3 CO5
	Discuss the working of standard Turing machine. Construct machine to accept the language of Palindromes over $\{0, 1\}$.		L2,3 CO5 L2 CO5
	Discuss the working of standard Turing machine. Construct machine to accept the language of Palindromes over {0, 1}. Discuss the following:	9	
	Discuss the working of standard Turing machine. Construct machine to accept the language of Palindromes over {0, 1}. Discuss the following: i) Universal Turing machine	9	

* * * *