P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Information Science and Engineering
Semester End Examination; July / August - 2022 Design and Analysis of Algorithms
Time: 3 hrs
Max. Marks: 100

Course Outcome

> The Students will be able to:
> CO1: Use asymptotic notations to analyze the performance of algorithms.
> CO2: Analyze the design of algorithms using Brute force, Decrease \& Conquer.
> CO3: Analyze the design of algorithms using Divide \& Conquer, Transform \& Conquer.
> CO4: Analyze the design of algorithms using Space and Time Tradeoffs, Dynamic Programming.
> CO5: Analyze the design of algorithms using Greedy technique, Backtracking, Branch \& Bound techniques.

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions I : PART - A	Marks	BLs	COs	
I a.	Define two kinds of algorithm efficiency.	$\mathbf{1 0}$	L1	CO1	
b.	Highlight any two differences between depth first search and breadth first				
	search.	2	L1	CO2	
c.	List three major variations of Transform-and conquer.	2	L1	CO3	
d.	Define; i) Hashing and ii) Collision in hashing.	2	L1	CO4	
e.	State n-queen's problem.		2	L1	CO5

1 a. Explain the various stages of algorithm design and analysis process with a $\quad 9 \quad$ L2 \quad CO1 diagram.
b. i) Define θ (big-theta) asymptotic natation. Prove that $1 / 2 n(n-1) \in \theta\left(n^{2}\right)$. 5
$5 \quad$ L3 CO1
ii) Write an algorithm to find largest element in a given array. Analyze its time efficiency.
c. i) Explain two ways of representing graphs.

5 L2 CO1
ii) Write an algorithm to determine whether all elements in a given array are distinct. Analyse its time efficiency.

UNIT - II
18
2 a. i) Using bubble sort algorithm, arrange the letters of the word 'QUESTION' in alphabetical order.
ii) Define topological sorting problem with an example.

3 L1 CO2
b. Write an algorithm to implement insertion sort. Analyze its best, worst and average case efficiency.
c. Write an algorithm for DFS. With an example, Explain how this algorithm can be used to solve topological sorting problem.

UNIT - III
3 a. Write an algorithm to implement merge sort with an example. Discuss its time efficiency.
b. i) Using quick sort, arrange the letters of the word 'QUICKSORT' in alphabetical order.
ii) Define AVL tree. Give an example for:
I) AVL tree
II) Binary search tree that is not an AVL tree
c. i) Apply binary search for the following array:

3	14	27	31	39	42	55	70	74	81	85	93	98

Elements to be searched =11
ii) Define heap tree with an example

UNIT - IV

L1 CO3
18
4 a. Write Horspool's algorithm. Apply Horspool algorithm to search for the pattern BAOBAB in the text.

9
L3 CO4 BESS_KNEW_ABOUT_BAOBABA
b. Write warshall's algorithm. Apply the same to find the transitive closure of the following graph:

L3 CO4
c. Solve the following knapsack problem with given capacity $\mathrm{w}=5$ using dynamic programming:

Item	Weight	Value
1	2	$\$ 12$
2	1	$\$ 10$
3	3	$\$ 20$
4	2	$\$ 15$

UNIT - V
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4$

5 a. Write kruskal's algorithm to find the minimum cost spanning tree. Trace the algorithm for the following graph:

L3 CO5

P18IS44

b. i) Construct a Huffman tree for the following data:

Character	A	B	C	D	E
Probability	0.4	0.1	0.2	0.15	0.15

6
L3 CO5
ii) Define P and NP problem.

3 L1 CO5
c. i) Compare branch and bound algorithm with back tracking

4 L4 CO5
ii) Draw the state space tree for the sum of subset problem of the instance.

$$
S=\{5,7,8,10\} \text { and } d=15
$$

5 L3 CO5

