P18IS4	14	Рс	ige N	o 1				
	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Information Science and Engineering Semester End Examination; July / August - 2022 Design and Analysis of Algorithms								
Time: 、		Max. 1	Marks	: 100				
Course Outcome The Students will be able to: CO1: Use asymptotic notations to analyze the performance of algorithms. CO2: Analyze the design of algorithms using Brute force, Decrease & Conquer. CO3: Analyze the design of algorithms using Divide & Conquer, Transform & Conquer. CO4: Analyze the design of algorithms using Space and Time Tradeoffs, Dynamic Programming. CO5: Analyze the design of algorithms using Greedy technique, Backtracking, Branch & Bound techniques. Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks. ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.								
Q. No.	Questions	Marks		COs				
2	I : PART - A	10	215	005				
I a.	Define two kinds of algorithm efficiency.	2	L1	CO1				
b.	Highlight any two differences between depth first search and breadth first search.	2	L1	CO2				
с.	List three major variations of Transform-and conquer.	2	L1	CO3				
d.	Define; i) Hashing and ii) Collision in hashing.	2	L1	CO4				
e.	State n-queen's problem.	2	L1	CO5				
	90							
	UNIT - I	18						
1 a.	Explain the various stages of algorithm design and analysis process with a diagram.	9	L2	CO1				
b.	i) Define θ (big-theta) asymptotic natation. Prove that $1/2 n(n-1) \in \theta(n^2)$.	5	L3	CO1				
	ii) Write an algorithm to find largest element in a given array. Analyze its time efficiency.	4	L4	CO1				
c.	i) Explain two ways of representing graphs.	5	L2	CO1				
	ii) Write an algorithm to determine whether all elements in a given array are distinct. Analyse its time efficiency.	4	L4	CO1				
	UNIT - II							
2 a.	i) Using bubble sort algorithm, arrange the letters of the word 'QUESTION' in alphabetical order.	6	L3	CO2				
	ii) Define topological sorting problem with an example.	3	L1	CO2				
b.	Write an algorithm to implement insertion sort. Analyze its best, worst and average case efficiency.	9	L1	CO2				

P18IS44			Page No 2		
c.	Write an algorithm for DFS. With an example, Explain how this algorithm can be used to solve topological sorting problem.	9	L4 CO2		
	UNIT - III	18			
3 a.	Write an algorithm to implement merge sort with an example. Discuss its time efficiency.	9	L2		
b.	i) Using quick sort, arrange the letters of the word 'QUICKSORT' in alphabetical order.	6	L3 CO3		
	ii) Define AVL tree. Give an example for:I) AVL treeII) Binary search tree that is not an AVL tree	3	L1 CO3		
с.	i) Apply binary search for the following array:				
	3 14 27 31 39 42 55 70 74 81 85 93 98 Elements to be searched = 11	6	L3 CO3		
	ii) Define heap tree with an example	3	L1 CO3		
	UNIT - IV	18			
4 a.	Write Horspool's algorithm. Apply Horspool algorithm to search for the				
	pattern BAOBAB in the text.	9	L3 CO4		
	BESS_KNEW_ABOUT_BAOBABA				

b. Write warshall's algorithm. Apply the same to find the transitive closure of the following graph:

9 L3 CO4

c. Solve the following knapsack problem with given capacity w = 5 using dynamic programming:

Item	Weight	Value	
1	2	\$12	
2	1	\$10	
3	3	\$20	
4	2	\$15	
UNIT - V			

5 a. Write kruskal's algorithm to find the minimum cost spanning tree. Trace the algorithm for the following graph:

P18IS44

b. i) Construct a Huffman tree for the following data:

υ.	o. I) construct a Hamman tree for the following data.								6		
		Character	Α	В	С	D	E			L3	CO5
		Probability	0.4	0.1	0.2	0.15	0.15				
	ii) Define P and NP problem.								3	L1	CO5
c.	 c. i) Compare branch and bound algorithm with back tracking ii) Draw the state space tree for the sum of subset problem of the instance. S = {5, 7, 8, 10} and d= 15 							4	L4	CO5	
							of the instance.	5	L3	CO5	

* * * *