U.S.N					

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

Eighth Semester, B.E. - Information Science and Engineering Semester End Examination; July /August - 2022 Big Data

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1:Demonstrate the characteristics of big data using map reduce
- CO2: Apply data modeling techniques to large data sets using HDFS.
- CO3: Develop application for big data analytics with the use of pig.
- CO4: Evaluate local and distributed modes using pig.
- CO5: Make use of hive data manipulation language for querying and analyzing data.

Note: I) PART - A is compulsory. Two marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks			POs
Q. 110.	I : PART - A	10	DLS	COS	105
I a.	Define big data. Why we need the concept of big data in industries.	2	L1	CO1	PO1
b.	List important features of YARN.	2	L2	CO2	PO1
c.	Explain the need of map-reduce model.	2	L1	CO3	PO1,2
d.	Summarize the procedures of debugging Hadoop.	2	L2	CO4	PO1,2
e.	List the features of HIVE.	2	L2	CO5	PO1
	II : PART - B	90			
	UNIT - I	18			
1 a.	List and summarize the big data applications.	9	L2	CO1	PO1
b.	Explain the different types of big data stack layers.	9	L1	CO1	PO1
c.	Explain the following with an example:				
	i) Structured and Unstructured data sources	9	L1	CO1	PO1
	ii) Conventional challenges in Big Data				
	UNIT - II	18			
2 a.	Discuss the concept of distributed data processing as a big data	9	L2	CO2	PO1
	technology.	,	LL	CO2	101
b.	Explain the structure of HDFS with a neat diagram.	9	L2	CO2	PO1
c	Define zookeepers. Explain the features with different applications.	9	L2	CO2	PO1
	UNIT - III	18			
3 a.	Explain the architecture of Hadoop along with their features.	9	L2	CO3	PO1,2
b.	Explain the features of map-reduce architecture.	9	L2	CO3	PO1
c.	Explain the various map reduce operation in Hadoop.	9	L2	CO3	PO1,2

P18IS81			Page No 2			
	UNIT - IV	18				
4 a.	Explain the YARN architecture with neat diagram.	9	L2	CO ₄ PO ₁		
b.	Explain the following:					
	i) Perform local application testing with eclipse	9	L2	CO4 PO1,2		
	ii) Defensive programming in map-reduce					
c.	Explain the various YARN schedulers with an example.	9	L2	CO4 PO1,2		
	UNIT - V	18				
5 a.	Explain the process of installing HIVE and its features.	9	L2	CO ₅ PO ₁		
b.	Explain how you query the data in HIVE, with an example?	9	L2	CO5 PO1,2		
c.	Explain the error handling procedure in PIG.	9	L2	CO5 PO1,2		

* * * *