\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Semester End Examination; July / Aug. - 2022
Linear Algebra and Analysis
Time: 3 hrs
Max. Marks: 100
Note: I) PART - A is compulsory. Two marks for each question.
II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of $\mathbf{1 8}$ marks from each unit.
Q. No.

Questions
Marks BLs COs
I : PART - A 10

I a. Define a Skew-symmetric matrix with example. $2 \quad$ L1 CO1
b. Define canonical form with example. $\quad 2 \quad \mathrm{~L} 1 \quad \mathrm{CO} 2$
c. Write down Laplace equation.

2 L1 CO3
d. Find the nature of $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}$
$2 \quad \mathrm{~L} 1 \quad \mathrm{CO} 4$
e. Define linearly dependent vectors.

2 L1 CO5
II : PART - B 90

UNIT - I
18
1 a. i) If A is a symmetric matrix, prove that A^{2} is also symmetric
ii) Express $\mathrm{A}=\left[\begin{array}{lll}1 & 5 & 3 \\ 7 & 9 & 0 \\ 3 & 1 & 1\end{array}\right]$ as a sum of \quad symmetric and skew $9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 1$ symmetric matrix
b. i) Define Hermitian, skew Hermitian and unitary matrices
ii) If $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2+i & 5-3 i \\ 2-i & 7 & 5 i \\ 5+3 i & -5 i & 2\end{array}\right]$ verify that iA is Skew - Hermitian $9 \quad$ L2 CO1 matrix.
c. Show that matrix $A=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$ is orthogonal.
$9 \quad \mathrm{~L} 2 \mathrm{CO} 1$

UNIT - II
18
2 a. Reduce the matrix A to its canonical form $A=\left[\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 2$
b. Find A^{-1} by Cayley - Hamilton theorem if $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
$9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 2$
c. Find the characteristic polynomial $\Delta(\mathrm{t})$ of $\mathrm{A}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & 1 \\ 2 & -1 & 3\end{array}\right]$
$9 \quad \mathrm{~L} 2 \quad \mathrm{CO} 2$

UNIT - III
3 a. Solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}$ subject to $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(4, \mathrm{t})=0$, $\mathrm{u}_{\mathrm{t}}(x, 0)=0$ and $\mathrm{u}(x, 0)=x(4-x)$ by taking $\mathrm{h}=1, \mathrm{k}=0.5$ up to 4 steps
b. Solve numerically $\frac{\partial^{2} u}{\partial x^{2}}=0.0625 \frac{\partial^{2} u}{\partial t^{2}}$ subjected to $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(5-\mathrm{t})=0$, $\mathrm{u}_{\mathrm{t}}(x, 0)=0$, and $\mathrm{u}(x, 0)=x^{2}(x-5)$ by taking $\mathrm{h}=1$ for $0 \leq \mathrm{t} \leq 1$
c. Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ in $0<x<5, \mathrm{t} \geq 0$ given that $\mathrm{u}(x, 0)=20, \mathrm{u}(0, \mathrm{t})=0$, $\mathrm{u}(5, \mathrm{t})=100$. Compute u for time-step with $\mathrm{h}=1$ by crank-Nicholson method.

UNIT - IV

4 a . Discuss the nature of the series,

$$
\frac{1}{4 \cdot 7 \cdot 10}+\frac{4}{7 \cdot 10 \cdot 13}+\frac{9}{10 \cdot 13 \cdot 16}+\frac{16}{13 \cdot 16 \cdot 19}+\cdots
$$

b. Test for the convergence of the series $\frac{1^{2}}{2}+\frac{2^{2}}{2^{2}}+\frac{3^{2}}{2^{3}}+\frac{4^{2}}{2^{4}}+\cdots$
c. Find the nature of series $\sum_{n=1}^{\infty} \frac{1}{3^{n}}\left(\frac{n+1}{n}\right)^{n^{2}}$

UNIT - V

5 a . Verify whether the following are subspace at set of all matrices, a vector space over R
i) $S=\left\{A \in M_{n}(F)=V \mid A\right.$ is a diagonal matrix $\}$
ii) $S=\left\{A \in M_{n}(F)=V \mid A\right.$ is a upper triangular matrix $\}$
b. Show that $S=\{(1,2,1),(2,1,0)(1,-1,2)\}$ forms a basis of $R^{3}(R)$

9 L3 CO5
c. i) Define linearly independent vectors
ii) Show that the following vectors are linearly independent in $9 \quad$ L3 \quad CO5 $\mathrm{R}^{3}(1,2,-1),(2,2,1),(1,-2,3)$

