

Contd... 2

P18MAO651

Page No... 2

18

UNIT - III

3 a.	where the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to $u(0,t) = 0$, $u(4,t) = 0$,	9	L2	CO3		
	$u_t(x,0) = 0$ and $u(x,0) = x(4-x)$ by taking $h = 1, k = 0.5$ up to 4 steps					
	2 2					

- b. Solve numerically $\frac{\partial^2 u}{\partial x^2} = 0.0625 \frac{\partial^2 u}{\partial t^2}$ subjected to u(0,t) = 0, u(5-t) = 0, $u_t(x,0) = 0$, and $u(x,0) = x^2(x-5)$ by taking h = 1 for $0 \le t \le 1$ 9 L2 CO3
- c. Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 \le x \le 5$, $t \ge 0$ given that u(x, 0) = 20, u(0,t) = 0, u(5,t) = 100. Compute u for time-step with h = 1 by crank-Nicholson 9 L3 CO3 method.

4 a. Discuss the nature of the series,

1	4	9	16	9	L2 CO4
$4 \cdot 7 \cdot 10^+$	$7 \cdot 10 \cdot 13$	$10 \cdot 13 \cdot 16$	$\overline{13\cdot 16\cdot 19}^+ \cdots$		

b. Test for the convergence of the series
$$\frac{1^2}{2} + \frac{2^2}{2^2} + \frac{3^2}{2^3} + \frac{4^2}{2^4} + \dots$$
 9 L3 CO4

^{c.} Find the nature of series
$$\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n}\right)^{n^2}$$
 9 L3 CO5

5 a. Verify whether the following are subspace at set of all matrices, a vector space over R 9 L2 CO5 i) $S = \{A \in M_n(F) = V \mid A \text{ is a diagonal matrix} \}$ ii) $S = \{ A \in M_n(F) = V | A \text{ is a upper triangular matrix} \}$ Show that $S = \{(1, 2, 1), (2, 1, 0), (1, -1, 2)\}$ forms a basis of R^3 (R) b. 9 L3 CO5 i) Define linearly independent vectors c. ii) Show that the following vectors are linearly independent in 9 L3 CO5 $R^{3}(1, 2, -1), (2, 2, 1), (1, -2, 3)$

* * * *