U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Semester End Examination; July / Aug. - 2022 Condensed Matter Physics

Time: 3 hrs Max. Marks: 100

Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any Two sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.					
Q. No.	Questions	Marks BLs COs POs			
T	I: PART - A	10	I.1. CO1 PO1		
I a.	Mention any two medical applications of x-ray.	2	L1 CO1 PO1		
b.	State Wiedemann-Franz Law.	2	L1 CO1 PO1		
c.	Define Entropy.	2	L1 CO1 PO1		
d.	State Biot-Savart Law.	2	L1 CO1 PO1		
e.	Define inertial and non-inertial frames.	2	L1 CO1 PO1		
	II : PART - B	90			
	UNIT - I	18			
1 a.	What are miller indies and derive an expression for interplaner spacing		L2 CO2 PO2		
	interns of miller indies.	9			
b.	Define Co-ordination number and atomic packing factor. Calculate the		L2 CO2 PO2		
	atomic packing factor for SC and FCC Structures.	9	L2 CO2102		
c.	Derive Bragg's equation and explain the construction and working of	9	L3 CO3 PO2		
	Bagg's Spectrometer.		L3 CO3 PO2		
	UNIT - II	18			
2 a.	Derive an expression for thermal conductivity of a conductor using	9	L2 CO2 PO2		
	classical force electron theory.	9	L2 CO2 PO2		
b.	Derive Wiedemann-Frenz law using classical free electron theory and	0	1.2 GO2 DO2		
	calculate the Lorenty numbers.	9	L3 CO2 PO2		
c.	i) Explain the principal and working of Refrigerator	6	1.2 GO2 DO2		
	ii) The temperature gradient in the earth crust in 32°C per km and the		L2 CO2 PO2		
	mean conductivity of the rocks is 0.008 CGS units. Taking the radius				
	of the earth as 6000 km, calculate the daily loss of heat by the earth.	3	L2 CO5 PO2		
	UNIT - III	18			
3 a.	What is a Carnot engine? Derive an expression for efficiency of				
	Carnot engine.	9	L3 CO3 PO2		
b.	i) What is reversible and irreversible process?	4	L2 CO2 PO2		
	ii) Calculate the efficiency of an engine having compression ratio13.8 and				
	the expansion ratio 6 and working on diesel cycle.	5	L2 CO5 PO2		
c.					
	expansion and isothermal compression.	9	L1 CO2 PO2		
	Contd 2				

P18PHO652					
	UNIT - IV	18			
4 a.	i) Derive an expression for energy stored in a magnetic field.	6	L3 CO3 PO2		
	ii) Find the potential at appoint $p(-1,2,3)m$ due to a point charge of -3 μC		L2 CO5 PO2		
	located at (-3, 1, 1) m.	3	L2 CO3 FO2		
b.	Define divergence of static magnetic fields, and derive an expression for it.	9	L3 CO2 PO2		
c.	Define electrostatic potential of dipole. Derive an expression for electrostatic potential due to dipole.	9	L3 CO2 PO2		
	UNIT - V	18			
5 a.	Derive an expression for variation of mass with velocity and discuss the variation with reference to special theory of relativity.	9	L3 CO2 PO2		
b.	i) Derive an expression for Lorenty length contraction and discuss the variations with speed.	6	L3 CO2 PO2		
	ii) At what speed a clock be moved so that it may lose 1 minute in each hour?	3	L3 CO5 PO2		
c.	Derive an expression for Einstein's mass energy equivalence.	9	L3 CO2 PO2		