P18ME44

Determine the young's modulus of the material.

c. A tapering rod has diameter d_1 at one end and it tapers uniformly to a diameter d₂ at the other end in a length L as shown in Fig. Q1(c). If modulus of elasticity of the material is E, find its change in length when subjected to an axial force of P.

UNIT - II

- 2 a. A compound bar of length 500 mm consists of a strip of aluminum 50 mm wide \times 20 mm thick and a strip of steel 50 mm wide \times 15 mm thick rigidly joined at ends. If the bar is subjected to a load of 50 kN, find the stresses developed in each material and the extension of the bar. Take elastic modulus of aluminum and steel as 1×10^5 N/mm² and 2×10^5 N/mm² respectively.
 - A plane element is subjected to stresses as shown in Fig. Q2(b). Determine b. principal stresses, maximum shear stress and their planes.

The state of stress at a point is a strained member is given below, c.

 $P_x = 180 \text{ N/mm}^2$, $P_y = 120 \text{ N/mm}^2$, $q = 80 \text{ N/mm}^2$. Draw Mohr's circle and determine;

- i) Direction of the principal planes
- ii) The magnitude of principal stresses, and
- iii) The magnitude of the maximum shear stress and its direction.

Contd...3

9 L4 CO2

9

L3 CO2

P18ME44

UNIT – III

18

3 a. The simply supported beam shown in Fig. Q3(a) carries two concentrated loads and a uniformly distributed load, Draw shear force diagram and bending moment diagram.

b. Draw the bending moment and shear force diagrams for the overhanging beam shown in Fig. Q3(b). Indicate all the values including point of contra flexure.

c.	Draw space diagram, SFD and BMD (only indicative) for a cantilever beam	4	L4 CO3
	subjected to a concentrated load at free end.	-	2. 000
	UNIT - IV	18	
4 a.	A circular pipe of external diameter 70 mm and thickness 8 mm is used as a		
	simply supported beam over an effective span 2.5 m. Find the maximum	9	L3 CO4
	concentrated load that can be applied at the centre of the span if permissible	7	LJ CO4
	stress in tube is 150 N/mm ² .		
b.	The diameter of a concrete flag post varies from 200 mm at base to 100 mm at		
	top. If the length of post is 8 m and horizontal load acting at top is 500 N, find	9	L2 CO4
	the section at which stress is maximum.		
c.	Determine the cross-section of a rectangular beam of uniform strength for a		
	simply supported beam of 6m span subjected to a central concreted load		
	of 30 kN.	9	L3 CO4
	i) By keeping depth of 300mm throughout		
	ii) By keeping width of 200 mm throughout		

P18ME44Page No... 4UNIT - V185 a. Obtain general torsional equation with assumptions.9L3CO5

b. The shaft shown in Fig. Q5(b) is securely fixed at A and is subjected to a torque of 8 kNm. If portion AB is solid shaft of 100 mm diameter and portion BC is hollow with external diameter 100 mm and internal diameter 75 mm, find the maximum stress and maximum angle of twist. Take $G = 80 \text{ kN/mm}^2$.

c. Obtain Rankine's formula for crippling load Pcr.

9 L3 CO5

* * * *