\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Mechanical Engineering
Semester End Examination; July / August - 2022
Mechanics of Materials
Time: 3 hrs
Max. Marks: 100

Course Outcome

The Students will be able to:
CO1: Classify different types of stresses, strain and deformations induced in the mechanical components due to external loads.
CO2: Estimate thermal stresses; calculate principal stresses in simple 2D elements.
CO3: Draw Shear Force Diagrams and Bending Moment Diagrams for uniform beams for different types of loads and support conditions.
CO4: Compute and analyze bending and shear stresses and deflections induced in beams.
CO5: Estimate torsional stresses in circular shafts; Analyze columns under buckling load; Analyze perfect frames under loads.
Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.

Q. No.	Questions	Marks BLs COs POs
	I: PART - A	10

I. Define the following,
a. Normal stress 2

2 L1 CO1
b. Coefficient of thermal expression 2
c. Shear force 2
d. Neutral layer 2
e. Pure torsion

2
L1 CO2
L1 CO3
L1 CO4
L1 CO5

PART - B	90
UNIT - I	18

1 a. A specimen of steel 25 mm diameter with a gauge length of 200 mm is tested to destruction. It has an extension of 0.16 mm under a load of 80 kN and the load at elastic limit is 160 kN . The maximum load is 180 kN . The total extension at fracture is 56 mm and the diameter at the neck is 18 mm . Find; $\quad 9 \quad$ L3 CO 1
i) The stress at elastic limit
ii) Young's modulus
iii) Percentage elongation
iv) Percentage reduction in area
v) Ultimate tensile stress
b. The bar shown in Fig. Q1(b) is tested in a universal testing machine. It is observed that at a load of 40 kN , the total extension of the bar is $0.285 \mathrm{~mm} . \quad 9 \quad \mathrm{~L} 3 \mathrm{CO} 1$ Determine the young's modulus of the material.

c. A tapering rod has diameter d_{1} at one end and it tapers uniformly to a diameter d_{2} at the other end in a length L as shown in Fig. Q1(c). If modulus of elasticity of the material is E , find its change in length when subjected to an axial force of P .

2 a . A compound bar of length 500 mm consists of a strip of aluminum 50 mm wide $\times 20 \mathrm{~mm}$ thick and a strip of steel 50 mm wide $\times 15 \mathrm{~mm}$ thick rigidly joined at ends. If the bar is subjected to a load of 50 kN , find the stresses developed in each material and the extension of the bar. Take elastic modulus of aluminum and steel as $1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ respectively.
b. A plane element is subjected to stresses as shown in Fig. Q2(b). Determine principal stresses, maximum shear stress and their planes.

Fig. Q $2(b)$.
c. The state of stress at a point is a strained member is given below,
$P_{x}=180 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{P}_{\mathrm{y}}=120 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{q}=80 \mathrm{~N} / \mathrm{mm}^{2}$. Draw Mohr's circle and determine;
i) Direction of the principal planes
ii) The magnitude of principal stresses, and
iii) The magnitude of the maximum shear stress and its direction.

UNIT - III

3 a. The simply supported beam shown in Fig. Q3(a) carries two concentrated loads and a uniformly distributed load, Draw shear force diagram and bending moment diagram.

LA COB

LA COB

LA COB

18
$9 \quad \mathrm{~L} 3 \quad \mathrm{CO} 4$

9
L2 CO

9
Lu CO
i) By keeping depth of 300 mm throughout
ii) By keeping width of 200 mm throughout

UNIT - V

5 a . Obtain general torsional equation with assumptions.
b. The shaft shown in Fig. Q5(b) is securely fixed at A and is subjected to a torque of 8 kNm . If portion AB is solid shaft of 100 mm diameter and portion BC is hollow with external diameter 100 mm and internal diameter 75 mm , find the maximum stress and maximum angle of twist. Take $\mathrm{G}=80 \mathrm{kN} / \mathrm{mm}^{2}$.

c. Obtain Rankine's formula for crippling load P_{cr}.

9 L3 CO5

