\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Mechanical Engineering
Semester End Examination; July / August - 2022 Kinematics of Machinery
Time: 3 hrs

Course Outcome

The Students will be able to:
CO1: Identify various mechanisms, determine their degrees of freedom; describe various inversions of four bar chain, single and double slider crank chain.
CO2: Analyze velocity of four bar and slider-crank mechanisms by relative velocity method and Instantaneous centre method. Analyze acceleration of four bar and slider-crank mechanisms by relative acceleration method.
CO3: Classify different types of gears; Explain Spur Gear terminology, law of gearing, interference and Back lash. Derive expressions for Path of contact, arc of contact and contact ratio. Solve numerical problems related to gears.
CO4: Describe Simple, Compound and Epicyclic gear trains; Determine velocity ratio, tooth load and torque in epicyclic gear trains. Explain and calculate ratio of belt tensions; Estimate power transmitted by belt drive; Analyze effect of slip, initial and centrifugal belt tension on performance of belt drive.
CO5: Explain cam and follower types; Explain different follower Motions; Construct cam profiles for different types of follower motions.

Note: i) PART-A is compulsory. One question from each unit for maximum of 2 marks.
ii) PART-B: Answer any TWO sub questions (from a, b, c) from each unit for a Maximum of 18 marks.
Q. No.

Questions

Marks
PART - A

1. a. Define the terms;
i) Mechanism
ii) Higher pair
b. Define the following:
i) Linear Velocity
ii) Angular Acceleration
c. Define Addendum and Dedendum2

d. Define Slip and Creep in belt drives 2
e. List two types of follower motion. 2

PART - B	90
UNIT - I	18

UNIT - I 18

1 a. Explain with neat sketches
i) Crank and slotted quick return motion mechanism
ii) Elliptical Trammel
b. With a neat sketch, explain working of a Peaucetlier Straight Line Mechanism and prove that it generates an exact straight line.
c. With a neat sketch, explain working of a Steering Gear Mechanism and derive the condition for the correct steering.

2 a. What is instantaneous centre? Locate all the instantaneous centre of a single slider crank mechanism and show how velocity of the slider and Angular velocity of the connecting rod are determined.
b. A four bar chain has a fixed link $\mathrm{AD}=1 \mathrm{~m}$, driving crank $\mathrm{AB}=0.3 \mathrm{~m}$, follower link $\mathrm{CD}=0.6 \mathrm{~m}$ and the connecting link $\mathrm{BC}=1.2 \mathrm{~m}$. The crank AB rotates at a speed of 300 rpm clockwise with an angular acceleration of $200 \mathrm{rad} / \mathrm{s} 2$ in anticlockwise direction. When the angle made by the crank with the fixed link is 135° in anticlockwise direction, determine;
i) Angular velocity of the link BC and CD
ii) Angular acceleration of the link BC and CD
iii) Acceleration of B and C

UNIT- III

3 a. State the law of gearing and Derive an expression for length of path of contact of gears
b. For two involute gears in mesh, with pinion as the driver the arc of approach is not less than 4.0 times the module. If the pressure angle is 20° and velocity ratio is 2.5 find;
i) Least number of teeth on each gear if interference is just avoided
ii) Addendum on the gear in terms of module
c. Two gear wheels mesh externally and are to give a velocity ratio of 3 to 1 . The teeth are of involute form; module $=6 \mathrm{~mm}$, addendum $=1 \mathrm{~m}$, pressure angle $=20$ degrees, the pinion rotates at 90 rpm , find;
i) Number of teeth on pinion to avoid interference on it and the corresponding number on the wheel
ii) The length of path and arc of contact
iii) The number of pairs of teeth in contact

UNIT- IV

4 a. Two shafts A and B are coaxial. A gear C (50 teeth) is rigidly mounted on shaft A. A compound gear D-E gears with C and an internal gear G. D has 20 teeth and gears with C and E has 35 teeth and gears with an internal gear G. Gear G is fixed and is concentric with the shaft axis. The compound gear D-E is mounted on a pin which projects from an arm keyed to the shaft B.
i) Sketch the arrangement
ii) If shaft A rotates at 110 rpm , find the speed of shaft B
b. A belt drive is required to transmit 50 kW at 1500 rpm of the smaller pulley. The centre distance between the belts is 2 mts and coefficient of friction is 0.3 . The transmission ratio is $4: 1$. The centrifugal tension may be taken as $1 / 3$ of the belt tension and allowable stress in the belt may be taken as 2 MPa for the belt material. The thickness of the belt is 15 mm . The velocity of the belt is $15 \mathrm{~m} / \mathrm{s}$. Determine;
i) Tension in the belt
ii) Maximum tension in the belt
iii) Width of belt

UNIT - V

5 a . Draw the profile of the cam when the roller follower moves with cycloidal motionduring outstroke and return stroke, as given below:
i) Outstroke with maximum displacement of 31.4 mm during 180° of cam rotation
ii) Return stroke for the next 150° of cam rotation
iii) Dwell for the remaining 30° of cam rotation.

The minimum radius of the cam is 15 mm and the roller diameter of the follower is 10 mm . The axis of the roller follower is offset by 10 mm towards right from the axis of the cam shaft. Cam rotates in CW direction.
b. A flat faced mushroom follower is raised through a distance of 25 mm is 120° rotation of the cam, remains at rest for the next 30° and is lowered during further 120° rotation of the cam. The raising of the follower takes place with cycloidal motion and the lowering with uniform acceleration and deceleration. However, the uniform acceleration is $2 / 3$ of the uniform deceleration. The least radius of the cam is 25 mm . Draw the cam profile assuming clockwise rotation of the cam.

