U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Sixth Semester, B.E. - Mechanical Engineering
Semester End Examination; July / Aug. - 2022
Finite Element Method

Time: 3 hrs Max. Marks: 100

Course Outcomes

The Students will be able to:

- CO1: Understand the basic concepts and mathematical preliminaries of FEM required to solve basic Field problems.
- CO2: Develop interpolation models for 1D and 2D elements that satisfy convergence criteria and geometrical isotropy and used iso parametric concept in the finite element analysis.
- CO3: Formulate element stiffness Matrices and load vectors for different elements using variational principle and analyze axially loaded bars.
- CO4: Use finite element formulation in the determination of stresses, strains and reaction of trusses and transversely loaded beams.
- CO5: Formulate finite element equation for heat transfer problems using variational and Galerkin techniques and apply these models to analyze conduction and convection heat transfer problems.

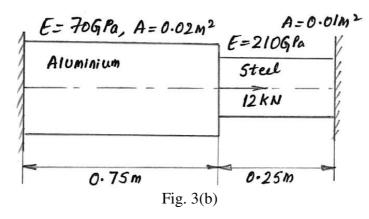
Note: I) **PART - A** is compulsory. **Two** marks for each question.

II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for a Maximum of 18 marks from each unit.

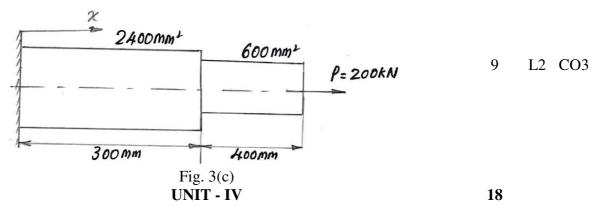
Q. No.	Questions	Marks	BLs	COs
	I : PART - A	10		
I a.	Define FEM. Write the application of FEM.	2	L1	CO1
b.	Explain ISO-parametric, Sub-parametric and super-parametric elements.	2	L1	CO2
c.	Write the load vector for uniformly distributed loan on a beam.	2	L1	CO3
d.	Explain principle of minimum potential energy.	2	L1	CO4
e.	Write the stiffness Matrix for Truss element.	2	L1	CO5
	II : PART - B	90		
	UNIT - I	18		
1 a.	Explain the steps involved in FEM.	9	L1	CO1
b.	Derive the equilibrium equation for 3D elastic body subjected to body force.	9	L2	CO1
c.	Explain plane stress and plane strain condition.	9	L1	CO1
	UNIT - II	18		
2 a.	Derive shape function for 1D linear element on Cartesian coordinate system.	9	L2	CO2
b.	Derive the shape function of CST element in neutral coordinate system.	9	L1	CO2
c.	State the properties of Shape functions and prove them.	9	L2	CO2
	UNIT - III	18		
3 a.	Derive the stiffness Matrix for 1D bar element.	9	L2	CO3
b.	Determine the nodal displacement for a bar which is subjected load shown in	9	L3	CO3
	Fig.Q3 (b), by elimination method.	9	L3	COS

4

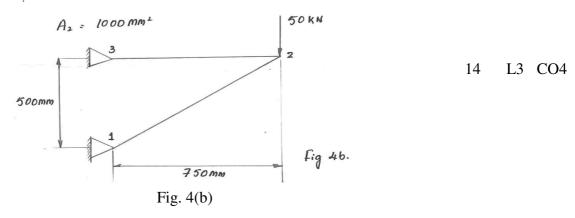
L3 CO4



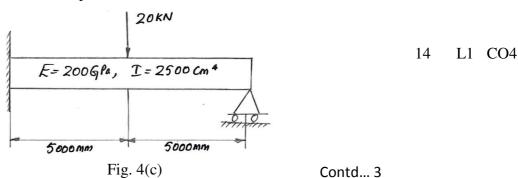
c. For the bar shown in Fig.Q3 (c). Determine Nodal displacements use penalty approach to handle the boundary conditions take E = 200 GPa.



- 4 a. Derive the stiffness Matrix for a truss element.
 - b. A truss shown in Fig.Q4 (b). Made of 2 bars, determine nodal displacement stress in each element. Take $A_1 = 1200 \text{ mm}^2$, $E_1 = E_2 = 2*10^5 \text{N/mm}^2$, $A_2 = 1000 \text{mm}^2$.



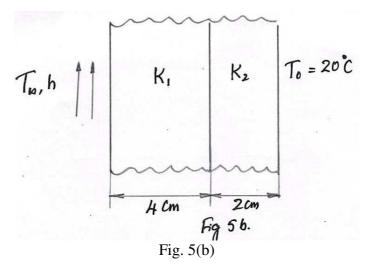
c. A beam fixed at one end and supported by a roller at the other end has a 20 kN concentrated load applied at the center of the span as shown in Fig.Q4 (c). Calculate the deflection and slopes.



4 L3 CO5

18

- 5 a. Derive the convective Matrix for a one dimensional fin.
 - b. Determine the temperature distribution through the composite wall shown in Fig.Q5 (b). When convection heat it loss occurs on the left surface. Assume unit area, wall thickness t=4 cm, $K_1=0.5$ W/cm°C, $K_2=0.05$ W/cm°C, h=0.1 W/cm² °C and $T_{\infty}=-5$ °C.

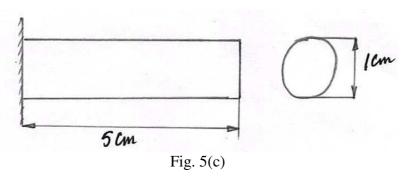


14 L3 CO5

L1 CO5

14

c. A metallic fan with thermal and conductivity of 70 W/cm°C of 0.5 cm radius and 5cm long extends from a plate whose temperature is 140°C. Determine the temperature distribution along the fin of heat transferred to ambient air at 20°C with convection coefficient of 5 W/cm²°C shown in Fig.Q5 (c). Take two elements along the fin. Element one is insulated.



* * * *