P18 M	IE63		Pc	ige No	o 1				
	U.S.N								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Mechanical Engineering Semester End Examination; July / Aug 2022 Heat and Mass Transfer									
Time:	3 hrs Course Outcomes	1	Max. I	Marks:	: 100				
 The Students will be able to: CO1: Understand fundamentals of three heat transfer modes and formulate governing differential equation to solve problems of one-dimensional steady state conduction heat transfer problems, with focus on fin design. CO2: Solve one dimensional steady state and transient heat conduction problems considering heat generation and variable thermal conductivity. CO3: Understand the concepts of convection heat transfer and solve related problems using both analytical and empirical approaches. CO4: Demonstrate fundamentals of radiation heat transfer problems CO5: Apply the heat transfer basics to design heat exchanger and understand the concept of condensation and boiling of liquids. <u>Note:</u> 1) PART - A is compulsory. Two marks for each question. II) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit. 									
	I) Use of data hand book is permitted.			~~	D 0				
Q. No.	Questions I : PART - A	Marks	BLs	COs	POs				
I a.	Define thermal diffusivity and what is its physical significance?	10 2	L1	CO1	PO1				
1 a. b.	What is lumped system analysis? When is it applicable?	2	L1	CO1	-				
с.	Define radiation shield and mention its applications.	2	L1	CO3					
d.	Define; i) Thermal conductivity and ii) Heat transfer coefficient.	2	L1	CO4					
e.	Give applications of boiling and condensation.	2	L1	CO5					
	II : PART - B	90							
	UNIT - I	18							
1 a.	Define critical thickness of insulation and derive expression for critical	9	L2	CO1	PO1				
	thickness of insulation for cylinder.								
b.	The wall of a house in a cold region consists of three layers, an outer								
	brick work 20 cm thick, an inner wooden panel 1.4 cm thick and								
	intermediate layer made of an insulating material 10 cm thick. The								
	inside and outside temperature of the composite wall 28° C and -12° C			~ ~ .					
	respectively. The thermal conductivity of brick and wood are	9	L3	CO1	PO2				
	0.7 W/mK and 0.18 W/mK respectively. If the layer of insulation has								
	thermal conductivity of 0.023 W/mK.								
	Find: i) The heat loss per unit area of the wall								

P18ME63 Page No 2				
c.	The aluminium square fins (0.6 \times 0.6 mm), 12 mm long are provided			
	on the surface of a semiconductor electronic device to carry 2 W			
	of energy generated. The temperature at the surface of the			
	device should not exceed 85°C, when the surrounding is at 35°C.	9	L3	CO1 PO2
	Given K = 200 W/mK, h = 15 W/m ² K. Determine number of			
	fins required to carry out the above duty. Neglect the heat loss from			
	end of fin.			
	UNIT - II	18		
2 a.	Obtain an expression for instantaneous heat transfer and total heat			
	transfer using lumped heat analysis for unsteady state heat transfer	9	L2	CO2 PO1
	from a body exposure to the surroundings.			
b.	Aluminium sphere weighing 6 kg and initially at a temperature of			
	420°C is suddenly immersed in a fluid at 18°C. The convective heat			
	transfer co-efficient is 45 W/m ² K. Estimate the time required to cool	9		CO2 DO2
	the sphere to 120°C. Also find the total heat flow from the sphere to	9	L3	CO2 PO2
	surroundings when it cools from 300°C to 120°C.			
	[for aluminium $\rho = 2700 \text{ Kg/m}^3$, C _p = 900 J/kgK, K = 200 W/mK]			
c.	In a production facility, large brass plates of 4 cm thickness that are			
	initially at a uniform temperature of 20°C are heated by passing			
	through an oven that as maintained at 500°C. The plates remain in the	9	L3	CO2 PO2
	oven for a period of 7 minutes, the combined heat transfer co-efficient	9	L3	CO2 FO2
	$h = 120 \text{ W/m}^2\text{K}$. Determine the surface temperature of the plates when			
	they come out of oven. Calculate using both lumped and heisler chart.			
	UNIT - III	18		
3 a.	Using dimensional analysis show that for free convective heat transfer	9	L2	CO4 PO1
	$Nu = B Gr^a Pr^b.$,	112	001101
b.	A vertical plate 4 m high and 6 m wide is maintained at 60°C and			
	exposed to atmosphere air at 10°C. Calculate the heat transfer from	9	L3	CO3 PO2
	both sides of the plate. For air at 35° C, take K = 0.027 W/mK,	,	15	005 102
	$\gamma = 16.5 \times 10^{-6} \text{ m}^2/\text{s}, \text{ P}_{\text{r}} = 0.7.$			
c.	Air at 30°C flows with a velocity of 10m/s along a flat plate 4 m long			
	is maintained at a uniform temperature of 130°C. Assuming critical			
	Reynolds number of 2×10^5 and width of the plate is 1 m, determine;	9	L3	CO3 PO2
	i) Heat flux at trailing edge of plate			
	ii) Heat transfer from laminar portion of plate			

ii) Heat transfer from laminar portion of plate

Contd... 3

P18ME63			Рс	Page No 3	
	UNIT - IV	18			
4 a.	Define:				
	i) Stefan Boltzmann Law				
	ii) Weins displacement Law	9	L2	CO4 PO1	
	iii) Radiation shield	7	L2	04 101	
	iv) Radiosity				
	v) Kirchhoff's Law				
b.	Two large parallel plates having emissivity of 0.3 and 0.6 are				
	maintained at a temperature of 900°C and 250°C. A radiation shield				
	having an emissivity of 0.05 on both sides is placed between two				
	plates. Calculate:	9	L3	CO3 PO2	
	i) Heat transfer without shield	,	L3	005 102	
	ii) Heat transfer with shield.				
	iii) Percentage reduction in the heat transfer due to shield.				
	iv) Temperature of the shield.				
c.	Prove that monochromatic emissive power of a black body is	9	L2	CO4 PO1	
	maximum when $T_{max} = 2900 \ \mu K$.	,	112	001101	
	UNIT - V	18			
5 a.	Derive an expression for LMTD of parallel flow heat exchanger.	9	L2	CO4 PO1	
b.	Saturated steam at 140°C is condensing on the outer surface of a single				
	pass heat exchanger. The overall heat transfer co-efficient is	9			
	1500 W/m ² K. Determine the surface area of the heat exchanger		L3	CO3 PO2	
	required to heat 2000 kg/h of water from 20°C and 45°C.			005 102	
	Also determine the route of condensation of steam in kg/h.				
	Assume latent heat is 2145 kJ/kg.				
c.	Define mass transfer co-efficient. State Fick's law and what are	9	L2	CO4 PO1	
	its limitations?	-		20, 101	
	ste ste ste				

* * * *