Note: Do not write on back side pages

Certified that this question paper, contains questions set from the PESCE approved Prescribed books, covering the entire syllabus and there are no

- OUT OF SYLLABUS QUESTIONS
- Questions with missing
 DATA/FIGURE/MARKS/SUBDIVISIONS

Total number of pages Submitted:

PAPER SETTER SIGNATURE:

Question Paper

Accepted

Rejected

Accepted With modification

SCRUTINIZER'S SIGNATURE

Exam: B.E. / M. Tech / MCA / MBA Branch: <u>AUTOMOBILE ENGINEERING</u> Sem: IV Semester Course Code: P15AU42 Course Title: Fluid Mechanics. Duration of Paper: 03 HOURS Maximum Marks: 100

Note:

Answer any five full questions selecting at least one full question from each unit .

Q NO	Questions	Marks	Bloom's Taxonomy		
			BL	CO	РО
1	UNIT-1 a) Define the following ? I. Density II. Specific weight	10	L1	CO1	
	 III. Kinematic viscosity IV. Surface tension. V. Capillarity. b) Derive the expressions for Capillary rise and Capillary fall. 	10	L2		
2	 Or a) List the different types of simple manometer and explain any two with neat sketch? b) A differential manometer is connected at two points A and B of two pines as shown in figure 2(b). Pine A contains a liquid. 	10	L2 L1,2		
	two pipes as shown in figure 2(b). Pipe A contains a liquid ofspecific gravity =1.5 while pipe B contains a liquid of specific gravity=0.9. the pressures at A and B are 1kgf/cm ² and 1.80kgf/cm ² respectively. Find the difference in mercury level in the differential manometer.	10			
	Sp. gr. = 1.5 $P_A = 1 \text{ kgf / cm}^2$ Sp. gr. =0.9 $Z_0 \text{ m}$ $P_B = 1.8 \text{ kgf / cm}^2$ X				
	Fig 2(b)				

3	UNIT-II a) Derive the expression for total pressure and center pressure for vertical plane surface submerged in liquid?	10	L2,3	
	b) Determine the total pressure on a circular plate of diameter 1.5m which is placed vertically in water in such a way that the center of the plate is 3 m below the free surface of water . Find the position of center and totalpressure .	10	L3	CO2
4	Or a) Explain the various conditions for equilibrium of a submerged and floating bodies ?	12	L2	
	b) A Solid Cylinder of diameter 4.0m has a height of 3 meters.Find the metacentric height of the cylinder when it is floating in water with its axis vertical. The specific gravity of the cylinder=0.6 ?	8	L3	
	Fig 4.b			
	UNIT-III			
5	a) Explain briefly any five types of fluid flow?	10	L2	
	b) Define the equation of continuity. Obtain an expression for	10	L3	
	continuity equation for a three dimensional flow			CO3
6	Or a) Derive the Euler's equation of motion ?			
	b) An oil of specific gravity 0.8 is flowing through a venturi	10	L1	
	meter having inlet diameter 20cm and throat diameter 10 cm . the oil mercury differential manometer shows a reading of 25 cm. calculate discharge of oil through the horizontal venturi meter .Take C_d =0.98 ?	10	L2	
	UNIT- IV			
7	a) Derive the HAGEN-POISEUILLE equation for laminar flow through circular pipe, explain shear stress distribution	12	L2,2	
	 and velocity distribution . b) A fluid of viscosity 0.7 Ns/m² and specific gravity 1.3 is flowing through a circular pipe of diameter 100 mm. the 			

	maximum shear stress at the pipe wall is given as 196.2 N/m^2	8	L1,3	
	Find the pressure gradient and average velocity ?			
	Or			
	a) Define sub sonia sonia and supersonia flow, on the basis of			CO4
8	a) Define sub-sonic, sonic and supersonic flow, on the basis of Mach Number for compressible fluid flow.			
	When i value i for compressione finde frow.	6	L2	
	b) Find the sonic velocity for the following fluids:			
	(i)Crude oil of sp.gr. 0.8 and bulk modulus 153036 N/cm ² ,		L2	
	 (ii) mercury having a bulk modulus of 2648700 N/cm² c) Explain any two cases for propagation of sound waves in a 	6		
	compressible fluid ?			
	1 I	8	L1	
	UNIT- V			
	a) What do you understand by the terms: Major energy loss and			
	minor energy losses in pipes? Derive Darcy-Weisbach			
9	equation?	12	L1,2	
-	b) Explain any 4 minor head losses ?		,	
	Or	8	L2	
		0	L2	
	a) Explain the following dimensionless number :			
10	I. Reynold's number			
10	II. Mach's numberIII. Weber's number			
	IV. Euler's number	10		
	V. Froude's number	10	L2	
				CO5
	b) The frictional torque T of a disc of diameter D rotating at			
	speed N in a fluid of viscosity μ and density ρ in a turbulent			
	flow is given by $T = D^5 N^2 \rho \varphi \left[\frac{\mu}{D^2 N \rho}\right]$. Prove this by the	10	L2,3	
	method of dimensions.			