P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Seventh Semester, B.E. - Automobile Engineering Semester End Examination; February - 2022 Vehicle Dynamics

Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit.
UNIT - I
1 a. Sketch and explain in brief SAE vehicle fixed and earth fixed coordinate system.
b. Explain the forces and moments of pneumatic tyre of an automobile.

2 a. A motor car weighs 17795 N including the four road wheels each of which has an effective diameter of 0.66 m , a radius of gyration of 0.28 m and a weight of 294 N has as an engine developing 66 kW at 2400 rpm . The parts which rotate at engine speed weight 1069 N , with a radius of gyration of 0.115 m . The transmission efficiency is 90% and the total road and air resistance at thus engine speed in top gear of $3.84: 1$ is 873 m on level road. Calculate the acceleration of $\mathrm{m} / \mathrm{s}^{2}$, under those conditions and assuming acceleration to be uniform the time required to increase the speed by $32 \mathrm{~km} / \mathrm{hr}$.
b. Explain static, non-rolling dynamic and rolling dynamic stiffness of pneumatic tire.

UNIT - II

3 a. Mention the assumptions and derive an equation for axial loads for a vehicle moving down the gradient.
b. A motor car with wheel base 2.75 m with C.G. 0.85 m above the ground the level and 1.15 m behind the front axle has coefficient of adhesion 0.6 between the tyre and ground. Calculate the maximum possible acceleration when the vehicle is?
i) Driven on four wheels, assuming that the slip occurs first at front wheels
ii) Driven on a front wheel only
iii) Driven on the rear wheels only
c. Derive an equation for load distribution on wheels on three wheeled vehicle.

4 a. Derive an equation for maximum achievable acceleration for front and rear wheel drive vehicle, when the vehicle moving on level road?
b. A passenger car having gross vehicle weight of 1000 kg . The wheel base of the vehicle is 2.5 m C.G. of the vehicle is 1.1 m from the rear axle and 0.7 m above the ground level. The vehicle is travelling up and gradient of 12°. Calculate the reaction of each wheel and what is the limiting value of inclination for overturning of the vehicle?
c. Write a note on effect of vertical C.G. position on maximum achievable acceleration and braking performance.

UNIT - III

5 a. Write a note on;
i) Stopping distance
ii) Work done braking
iii) Braking efficiency along
iv) Brake torque with suitable mathematical equations
b. A motor car has a wheel base of 2.64 m , the height of C.G. above the ground level is 0.61 m , and it is 1.12 m in front of the rear axle. If the car is travelling at $40 \mathrm{~km} / \mathrm{hr}$ on a level road, determine the minimum stooping distance, when?
i) The rear wheels are braked
ii) The front wheels are braked
iii) All the wheels are braked

Take $\mu=0$.
6 a . With a neat sketch, explain the construction of drum and disk braking system.
b. A motor weighs 13341.5 N and has a wheelbase of 2.65 m . The C.G. is 1.27 m behind the front axle and 0.76 m above the ground level. Maximum braking on all four wheels on level ground will bring the vehicle uniformly to rest from a speed of $64 \mathrm{~km} / \mathrm{h}$ in a distance of 25.9 m . Calculate the value of an adhesion between the tyre and the road. Under the same road condition, vehicle descends a hill of gradient 1 in 20 and is braked on the front wheels only. Determine the load distributed between the front and rear wheels and the distance required to bring the car to rest.

UNIT - IV

7 a . The distance between the king-pins of car is 1.3 m , the track arms are 0.1525 m long and the length of the track rod is 1.2 m for a track. 1.42 m and wheel base of 2.85 m , find the radius of curvature of the path followed by the rear-side front wheel at which correct steering is obtained when the car is turning to the right.
b. Describe the cornering properties of pneumatic tyre of an automobile.

8 a. Explain the directional stability during under steer and over steer.
b. Explain the condition for true rolling and write equations for turning circle radius.

UNIT - V

9 a . Explain the different sources of vibration of an automobile.
b. Explain the model an automobile for two-degree freedom system considering sprung and un sprung mass and write the equation of motion for the same.

10 a . Explain with a suitable equations aerodynamic drag, lift and skin friction and write a note on effect of same on stability and performance of an automobile.
b. Show the aerodynamic pressure distribution on an automobile and explain different aerodynamics aids.

