U.S.N

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E. - Computer Science and Engineering Make-up Examination; March/April - 2022 Theory of Computation

Time: 3 hrs

Max. Marks: 100

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit. UNIT - I

- 1 a. Define DFA and language accepted by DFA. Design a DFA over $\sum = \{0,1\}$ such that every string must ends with 101.
 - b. Define NFA and language accepted by NFA. Design NFA over $\sum = \{a, b\}$ such that every string must ends with "*bab*" and hence convert the same into its equivalent DFA.
- ² a. Design ε -NFA over $\sum = \{a, b, c\}$ such that every string must have zero or more number of *a*'s followed by zero or more number of *b*'s fallowed by zero or more number of *c*'s and 10 hence convert the same into its equivalent DFA.
 - b. Obtain equivalent class of states for the following DFA and hence obtain minimum state DFA

States	Σ		
	0	1	
►A	В	С	
В	D	Е	
С	F	G	
D	D	Е	
Е	F	G	
F	D	Е	
G	F	G	
UNIT - II			

3 a. Define regular expression and hence write regular expression for the following regular languages:

i) Ends with either 011 or 010 or 110

- ii) $L = \{a^i b^i \mid i \text{ is odd and } j \text{ is even}\}$
- iii) $|w| \mod 3 = 0$ over $\sum = \{a, b\}$
- b. Prove that for every regular expression R representing regular language L(R), there exists an equivalent finite automata, M such that L(R)=L(M)
- 4 a. State and prove pumping lemma for regular language.
- b. Prove that the following operations on regular language are closed.
 - i) complement
 - ii) Reversal

10

10

10

10

P17CS43

UNIT - III

5 a.	Define CFG and hence write CFG for the following CFL's:			
	i) $L = \{a^i b^i c^k \mid j = i + k\}$			
	ii) Palindrome over $\sum = \{a, b, c\}$			
b.	Define derivation LMD RMD and derivation tree with example for the following:			
	$CFG: E \to E + T T \to T * F F \to id$	10		
6 a.	Define Ambiguous grammars prove that the following CFG is ambiguous:	10		
	$E \to E + E \mid E * E \mid id$			
b.	Prove that CFL's are closed under union, concatenation and star closure.	10		
UNIT - IV				
7 a.	Define PDA instantaneous description and language accepted by PDA.	10		
b.	b. Design a PDA to recognize the language, $L = \{ww^R \mid w \in \{a, b\}^* \text{ and } w^R \text{ is the reverse of } w\}$			
8 a.	Design a PDA to recognise the language $L = \{w \in \{0,1\}^* \mid no(w) = n_1(w)\}$	10		
	State whether the resultant PDA is deterministic or not. Justify your answer.			
b.	Design a PDA to recognise the language $L = \{a^i b^j c^k \mid j = i + k\}$	10		
UNIT - V				
9 a.	Define TM. Design TM to recognse the language $L = \{a^n b^n c^n \mid n \ge 0\}$	20		
10.	Write a note on;	7		
	a) Extension to the basic TM	6		
	b) Recursively Enumerable language	7		
	c) Posts correspondence problem	1		

* * *