## P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Computer Science and Engineering
Make-up Examination; March/April - 2022
Theory of Computation
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

## UNIT - I

1 a. Define DFA and language accepted by DFA. Design a DFA over $\sum=\{0,1\}$ such that every string must ends with 101.
b. Define NFA and language accepted by NFA. Design NFA over $\sum=\{a, b\}$ such that every string must ends with " $b a b$ " and hence convert the same into its equivalent DFA.
2 a. Design $\varepsilon$-NFA over $\sum=\{a, b, c\}$ such that every string must have zero or more number of $a$ 's followed by zero or more number of $b$ 's fallowed by zero or more number of $c$ 's and hence convert the same into its equivalent DFA.
b. Obtain equivalent class of states for the following DFA and hence obtain minimum state DFA

| States | $\sum$ |  |
| :---: | :---: | :---: |
|  | 0 | 1 |
| $\rightarrow \mathrm{~A}$ | B | C |
| B | D | E |
| C | F | G |
| D | D | E |
| E | F | G |
| F | D | E |
| G | F | G |

UNIT - II
3 a . Define regular expression and hence write regular expression for the following regular languages:
i) Ends with either 011 or 010 or 110
ii) $L=\left\{a^{i} b^{i} \mid\right.$ is odd and $j$ is even $\}$
iii) $|w| \bmod 3=0$ over $\sum=\{a, b\}$
b. Prove that for every regular expression $R$ representing regular language $L(R)$, there exists an equivalent finite automata, $M$ such that $L(R)=L(M)$

4 a . State and prove pumping lemma for regular language.

## UNIT - III

5 a. Define CFG and hence write CFG for the following CFL's:
i) $L=\left\{a^{i} b^{i} c^{k} \mid j=i+k\right\}$
ii) Palindrome over $\sum=\{a, b, c\}$
b. Define derivation LMD RMD and derivation tree with example for the following:
$\mathrm{CFG}: E \rightarrow E+T \quad T \rightarrow T^{*} F \quad F \rightarrow i d$
6 a. Define Ambiguous grammars prove that the following CFG is ambiguous:
$E \rightarrow E+E\left|E^{*} E\right| i d$
b. Prove that CFL's are closed under union, concatenation and star closure.

## UNIT - IV

7 a. Define PDA instantaneous description and language accepted by PDA.
b. Design a PDA to recognize the language,
$L=\left\{w w^{R} \mid w \mathcal{E}\{a, b\}^{*}\right.$ and $w^{R}$ is the reverse of $\left.w\right\}$
8 a. Design a PDA to recognise the language $L=\left\{w \mathcal{E}\{0,1\}^{*} \mid n o(w)=n_{1}(w)\right\}$
State whether the resultant PDA is deterministic or not. Justify your answer.
b. Design a PDA to recognise the language $L=\left\{a^{i} b^{j} c^{k} \mid j=i+k\right\}$

UNIT - V
9 a. Define TM. Design TM to recognse the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
10. Write a note on;
a) Extension to the basic TM
b) Recursively Enumerable language
c) Posts correspondence problem

