P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Civil Engineering
Make-up Examination; March/April - 2022
Basic structural Analysis

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Define static indeterminacy, kinematic indeterminacy and principle of superposition.
b. Analyze the truss using method of joints as shown in Fig. 1 (b).

Fig. 1(b)
2. a List the assumptions made for the analysis of plane trusses.
b. Using Macaulay's method, calculate the slope at D and deflection at B as shown in Fig. 2 (b).

Fig.2(b)
UNIT - II
3 a. State Mohr's theorems used in moment area method and derive the equations.
b. Determine the slope and deflection at the free end for the cantilever beam shown in Fig. 3 (b).by using moment area method.

Fig.3(b)
4 a. Define conjugate beam? Tabulate the relation between the various types of real support and conjugate support.
b. Compute slope and deflection at free end of a beam shown in Fig. 4 (b).using conjugate beam method.

Fig.4(b)

UNIT - III

5 a. Prove that the bending moment anywhere in three hinged parabolic arch subjected to uniformly distributed load over entire span is equal to zero.
b. A symmetrical three hinged parabolic arch has a span of 20 m it carries UDL of $10 \mathrm{kN} / \mathrm{m}$ over a entire span and two point loads of 40 kN each at 2 m and 5 m from left hand support calculate reaction, bending moment, normal thrust, radial shear at a section 4 m and 15 m from left support take rise of 4 m .
6 a . A suspension cable has a span of 20 m and a dip of 4 m carries a UDL of $20 \mathrm{kN} / \mathrm{m}$ over the entire span. Find the maximum tension in the cable and also the length of the cable.
b. Derive an expression for length of cable subjected to UDL

UNIT - IV

7 a. Define influence line. What are the uses of influence line?
b. For a simply supported beam of span ' l ' sketch a typical ILD for shear force at a section which is at a distance a from left support and b from right support when a unit load crosses the beam. Reduce the relevant equations.
8 a. The loading system shown in Fig. 8(a).crosses a girder of span 30 m . Determine the maximum reaction induced at the support.

Fig. 8(a)
b. An UDl of $60 \mathrm{kN} / \mathrm{m}$ covering a length of 5 m , crosses a girder of span 16 m . Determine the maximum +ve and -ve shear force at a section 6 m from the left support.

UNIT - V

9. Analyze the propped cantilever beam of span 3 m subjected to an UDL of $10 \mathrm{kN} / \mathrm{m}$ throughout and a point load of 5 kN at mid-span of the beam. Draw BMD and SFD.
10. Analyze the continuous beam shown in the fig. 10 by theorem of three moments, draw SFD and BMD.

Fig. 10

* * *

