P17MAES41 Page No 1						
]					
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Make-up Examination; March/April - 2022 Engineering Mathematics - IV (Common to EC, EE, IS & CS Branches)						
Time: 3 hrs Max. Marks: 100						
Note: Answer FIVE full questions, selecting ONE full question from each unit.						
UNIT - I						
1 a. Use Newton-Raphson iterative formula to find the real root of the equation	6					
$x \log_{10} x = 1.2$ and hence find the root correct to three decimal places.	Ū					
b. Find real root of the equation of $cosx = 3x - 1$ correct to three decimal places using	7					
Regula-falsi method	,					
c. Find the smallest root of the equation $x^2 + 2x - 2 = 0$, using fixed point iteration method	7					
and accelerate the convergence by Aitkin's Δ^2 – method.	,					
2 a. Using modified Euler's method find y at $x = 0.2$ given,						
$\frac{dy}{dx} = 3x + \frac{1}{2}y$ with $y(0) = 1$ taking $h = 0.1$. Perform three iterations at each step.	(
b. Use Fourth order Runge-Kutta method to solve,						
$(x + y)\frac{dy}{dx} = 1$, $y(0.4) = 1$ at $x = 0.5$ correct to four decimal places.	7					
c. Apply Milnes and Adam- Bash forth predictor & corrector method to						
compute y(1.4) correct to four Decimal place given $\frac{dy}{dx} = x^2 + \frac{y}{2}$ and the	7					
data: $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.4649$, $y(1.3) = 2.7514$						
UNIT - II						
3 a. Define vector space and subspace. Give with suitable example.	e					
b. Prove that $u = (1,0,0)$, $v = (0,1,0)$ and $w = (0,0,1)$ are linearly independent.	7					
c. Find rank and nullity of the linear transformation	7					
$T: R^{3} \to R^{3}by T(x, y, z) = (x + y, x + y + 2z, 2x + y + 3z)$	/					
4 a. Solve the system of the equations						
x + y + 54z = 110, $27x + 6y - z = 85$, $6x + 15y + 2z = 72$ by Gauss –Seidel method	(
to obtain the numerical solution correct to three places of decimals.						
b. Solve by relaxation method;	7					
10x - 2y - 2z = 6, $-x + 10y - 2z = 7$, $-x - y + 10z = 8$,	,					

P17MAES41

Page No... 2

6

7

6

6

7

7

6

c. Find the dominant Eigen value and the corresponding Eigen vector of the matrix, by

Power method
$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Taking [1,1.1] as initial Eigen vector (perform six iterations).

UNIT - III

5 a. Show that
$$f(z) = \sin z$$
 is analytic and hence find $f'(z)$.

b. If
$$f(z)$$
 is analytic, show that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4 |f'(z)|^2$ 7

- c. Discuss the conformal transformation $w = z + (1/z), z \neq 0$
- 6 a. Evaluate $\int_{0}^{2+i} (\overline{z})^2 dz$ (i) along the line x = 2y (ii) along the real axis up to 2 and then vertically to 2+i.

b. Expand
$$f(z) = \frac{2z+3}{(z+1)(z-2)}$$
 as Laurent series in the regions
(i) $|Z| < 3$ (ii) $1 < |Z| < 2$ 7

c. Evaluate
$$\int \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2 (z-2)} dz$$
, where C is the circle $|Z| = 3$ using Cauchy's residue 7

theorem.

UNIT - IV

- 7 a. The first four moments about arbitrary value '4' of a frequency distribution are -1.5,
 17, -30 and 108 respectively. Find skewness and kurtosis, based on moments.
 - b. Fit a parabola of second degree $y=a+bx+cx^2$ for the data

х	0	1	2	3	4	
у	1	1.8	1.3	2.5	2.3	

c. Find the equation of the lines of regression and correlation coefficient for the following data:

x	36	23	27	28	28	29	30	31	33	35
у	29	18	20	22	27	21	29	27	29	28

8 a. The p.m.f of a random variable X(=x) is given in the following table:

x	0	1	2	3	4	5	6
f(x)	k	3 <i>k</i>	5 <i>k</i>	7 <i>k</i>	9 <i>k</i>	11 <i>k</i>	13 <i>k</i>

For what value of k, this represents a valid probability distribution? Also, find $p(x \ge 5)$,

$$p(x \le 4)$$
 and $p(3 < x \le 6)$.

P17MAES41

b.

c. The length of a telephone conversation has an exponential distribution with mean of 3 minutes. Find the probability that a cell (i) ends in less than 3 minutes (ii) takes between 3 and 5 minutes.

UNIT - V

9 a. The joint distribution of two random variables X and Y is as follows.

X X	-4	2	7
1	1/8	1/4	1/8
5	1/4	1/8	1/8

Compute the following:

busy(iv) at most 2 lines are busy.

- i) E(X) and E(Y) ii) E(XY) iii) σ_x and σ_y
- b. Find the unique fixed probability vector of the regular stochastic matrix

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 1/2 & 1/3 \\ 0 & 2/3 & 1/3 \end{bmatrix}$$
7

Page No... 3

7

7

6

6

7

c. The joint density function of two continuous random variables X and Y is given by

$$f(x, y) = \begin{cases} kxy, 0 \le x \le 4, 0 \le y \le 5\\ o, otherwise \end{cases}$$
 Find; 7

i) The value of k ii) E(XY) iii) E(2X+3Y)

10 a. Obtain the series solution of the differential equation $\frac{d^2y}{dx^2} + xy = 0$

b. Express the polynomial in terms of Legendre polynomial $x^3 + x^2 + x + 1$.

Prove that; i)
$$J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
 ii) $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ 7

* * *