P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Make-up Examination; March/April - 2022 Engineering Mathematics - IV
(Common to EC, EE, IS \& CS Branches)
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a. Use Newton-Raphson iterative formula to find the real root of the equation $x \log _{10} x=1.2$ and hence find the root correct to three decimal places.
b. Find real root of the equation of $\cos x=3 x-1$ correct to three decimal places using Regula-falsi method
c. Find the smallest root of the equation $x^{2}+2 x-2=0$, using fixed point iteration method and accelerate the convergence by Aitkin's Δ^{2} - method.
2 a. Using modified Euler's method find y at $x=0.2$ given, $\frac{d y}{d x}=3 x+\frac{1}{2} y$ with $y(0)=1$ taking $h=0.1 . \quad$ Perform three iterations at each step.
b. Use Fourth order Runge-Kutta method to solve,
$(x+y) \frac{d y}{d x}=1, y(0.4)=1$ at $x=0.5$ correct to four decimal places.
c. Apply Milnes and Adam- Bash forth predictor \&corrector method to compute $y(1.4)$ correct to four Decimal place given $\frac{d y}{d x}=x^{2}+\frac{y}{2}$ and the
data: $y(1)=2, y(1.1)=2.2156, y(1.2)=2.4649, y(1.3)=2.7514$
UNIT - II
3 a. Define vector space and subspace. Give with suitable example. 6
b. Prove that $u=(1,0,0), v=(0,1,0)$ and $w=(0,0,1)$ are linearly independent. 7
c. Find rank and nullity of the linear transformation $. T: R^{3} \rightarrow R^{3}$ by $T(x, y, z)=(x+y, x+y+2 z, 2 x+y+3 z)$
4 a . Solve the system of the equations
$x+y+54 z=110, \quad 27 x+6 y-z=85, \quad 6 x+15 y+2 z=72$ by Gauss - Seidel method to obtain the numerical solution correct to three places of decimals.
b. Solve by relaxation method;

$$
\begin{equation*}
10 x-2 y-2 z=6, \quad-x+10 y-2 z=7, \quad-x-y+10 z=8 \tag{7}
\end{equation*}
$$

c. Find the dominant Eigen value and the corresponding Eigen vector of the matrix, by

Power method $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
Taking $[1,1.1]$ as initial Eigen vector (perform six iterations).

UNIT - III

5 a. Show that $f(z)=\sin z$ is analytic and hence find $f^{\prime}(z)$.
b. If $f(z)$ is analytic, show that $\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right]|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
c. Discuss the conformal transformation $w=z+(1 / z), z \neq 0$

6 a. Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d z$ (i) along the line $x=2 y$ (ii) along the real axis up to 2 and then vertically to $2+i$.
b. Expand $f(z)=\frac{2 z+3}{(z+1)(z-2)}$ as Laurent series in the regions
(i) $|Z|<3$
(ii) $1<|Z|<2$
c. Evaluate $\int \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$, where C is the circle $|Z|=3$. using Cauchy's residue theorem.

UNIT - IV

a. The first four moments about arbitrary value ' 4 ' of a frequency distribution are -1.5 , 17, -30 and 108 respectively. Find skewness and kurtosis, based on moments.
b. Fit a parabola of second degree $y=a+b x+c x^{2}$ for the data

x	0	1	2	3	4
y	1	1.8	1.3	2.5	2.3

c. Find the equation of the lines of regression and correlation coefficient for the following data:

x	36	23	27	28	28	29	30	31	33	35
y	29	18	20	22	27	21	29	27	29	28

8 a. The p.m.f of a random variable $\mathrm{X}(=\mathrm{x})$ is given in the following table:

x	0	1	2	3	4	5	6
$f(x)$	k	$3 k$	$5 k$	$7 k$	$9 k$	$11 k$	$13 k$

For what value of k , this represents a valid probability distribution? Also, find $p(x \geq 5)$, $p(x \leq 4)$ and $p(3<x \leq 6)$.
b. The number of telephone lines at an instant of time is a binomial variate with probability 0.1 that a line is busy. If 10 lines are chosen at random, what is the probability that (i) at least one line is busy (i)no line is busy (ii)all lines are busy(iii) at least one line is busy(iv) at most 2 lines are busy.
c. The length of a telephone conversation has an exponential distribution with mean of 3 minutes. Find the probability that a cell (i) ends in less than 3 minutes (ii) takes between 3 and 5 minutes.

UNIT - V
9 a. The joint distribution of two random variables X and Y is as follows.

X	-4	2	7
1	$1 / 8$	$1 / 4$	$1 / 8$
5	$1 / 4$	$1 / 8$	$1 / 8$

Compute the following:
i) $E(X) a n d E(Y)$
ii) $E(X Y)$
iii) $\sigma_{x} a n d \sigma_{y}$
b. Find the unique fixed probability vector of the regular stochastic matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \tag{7}\\
1 / 6 & 1 / 2 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]
$$

c. The joint density function of two continuous random variables X and Y is given by $f(x, y)=\left\{\begin{array}{l}k x y, 0 \leq x \leq 4,0 \leq y \leq 5 \\ o, \text { otherwise }\end{array}\right.$ Find;
i) The value of k
ii) $\mathrm{E}(\mathrm{XY})$
iii) $E(2 X+3 Y)$

10 a. Obtain the series solution of the differential equation $\frac{d^{2} y}{d x^{2}}+x y=0$
b. Express the polynomial in terms of Legendre polynomial $x^{3}+x^{2}+x+1$.
$\begin{array}{ll}\text { Prove that; i) } J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x & \text { ii) } J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x\end{array}$

