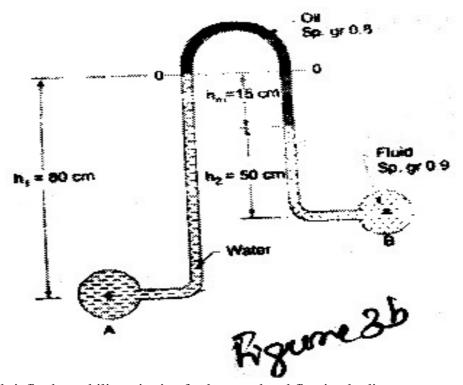


indicated in Figure 3b. If $P_B = 5 \times 10^4 \text{ N/m}^2$ and the barometer reading is 730 mm of

mercury, find the pressure in pipe A in meters of water absolute.


Contd... 2

6

8

12

10

- c. Explain briefly the stability criteria of submerged and floating bodies.
- 4 a. State the principle of pressure measurement by manometer. Explain the difference between a simple and differential manometer with a neat sketch.
 - b. A hollow cylinder closed at both ends has an outside diameter of 1.25 m, length 3.2 m and specific weight 75 kN/m³. If the cylinder is to float just in stable equilibrium in sea water, find its minimum permissible thickness. Presume that sea water weighs 10 kN/m^3 .

UNIT - III

5 a.	Define and distinguish between:	4
	i) Uniform and non-uniform flow ii) Steady and unsteady flow	4
b.	Derive the general three-dimensional equation of continuity and deduce from it the	8
	continuity equation for one dimensional frictionless flow.	
c.	The velocity potential for a two-dimensional flow is $\phi = x(2y - 1)$. Determine the	8
	velocity at the point $(4, 5)$. Also obtain the value of stream function at this point <i>P</i> .	
6 a.	Derive the Euler's equation of motion along a stream line and hence derive the	10
	Bernoulli's equation.	
b.	A 30 cm x 15 cm venturimeter is provided in a vertical pipeline carrying oil of specific	
	gravity 0.9 the flow being upwards. The difference in elevations of the throat section	
	and entrance section of the venturimeter is 30 cm. The differential U-tube mercury	

manometer shows a gauge deflection of 25 cm. Calculate;i) The discharge of oil

ii) The pressure difference between the entrance section and the throat section.

Take the discharge co-efficient as 0.98 and specific gravity of mercury as 13.6.

Contd... 3

P17ME33

4

8

10

UNIT - IV

- 7 a. What are the coefficients of drag and lift? Briefly explain.
- b. Flow takes place over a flat plate exposed parallel to free stream. Draw a picture of 8 laminar and turbulent boundary layers and the transition zone separating them and explain them in detail.
- c. Determine the displacement thickness and momentum thickness in terms of the nominal boundary layer thickness ' δ ' in respect of the following velocity profile in the boundary

layer on a flat plate;
$$\frac{u}{U_0} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$$
.

- 8 a. Explain the total energy line (energy gradient line) and the hydraulic gradient line for fluid flow through a piping system.
 - b. Water flows through a 30 cm diameter pipe and the flow causes a measured lost head of 15 m in 350 m of pipe length. Calculate;
 - i) The shear stress at the walls
 - ii) The shear stress at 5 cm from the centre line of the pipe
 - iii) The friction velocity
 - iv) The average velocity for friction coefficient 'f' value of 0.0125 in the Darcy

equation
$$h_f = \frac{4 f l v^2}{2gd}$$

UNIT - V

- 9 a. Derive a Hagen-Poseuille equation.
 - b. Explain the following:

i) Critical Reynolds number

- ii) Laminar uni-directional flow between stationary parallel plates
- The resulting force 'F' of a supersonic plane during flight can be considered as 10 a. dependent upon the length of aircraft 'I', velocity 'V', air viscosity ' μ ', air density ' ρ ' 12 and Bulk modulus of air 'K'. Express the functional relationship between these variables and the resisting force.
 - b. Define the following:
 - i) Fundamental quantities
 - ii) Derived quantities
 - iii) Repeating variables
 - iv) Dimensional homogeneity
 - Explain the significance of dimensional analysis applied to fluid flow problems. с.

* * *

10

10

10

4

4